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GRAPHS ARE EVERYWHERE




THE GRAPH ABSTRACTION
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GRAPH-BASED MODELS ARE USED TO

Classify breast cancer

Detect fraud

Recommend items

Classify proteins

Filter spam

Predict disease-gene associations

Induce object-oriented perception and reasoning



COMMON ASSUMPTIONS
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observed graph

The graph is an output of a complex pipeline



NOISE AND ADVERSARIES
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NOISE AND ADVERSARIES
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Machine learning on graphs in real-world settings



FEATURES CAN BE PERTURBED TOO
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PROBLEM SETUP

Semi-supervised node classification
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PROBLEM SETUP

Semi-supervised node classification
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THE ADVERSARY WANTS TO

Change the prediction of a target node

f(G), £(G), f(G),

The prediction is @ after perturbation

13



HOW EASY IS TO MANIPULATE THE PREDICTION?
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Attackers can misclassify most nodes by perturbing just a few edges
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ROBUSTNESS CERTIFICATE

Provable guarantee that the prediction does not change

Verify whether for all admissible perturbed graphs G:

argmax f(G) = argmax f(G),,

classy class y
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CERTIFICATE ILLUSTRATION
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CERTIFICATE ILLUSTRATION
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CERTIFICATE ILLUSTRATION
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CERTIFICATE ILLUSTRATION

admissible perturbations
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CERTIFICATE ILLUSTRATION
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(LOWER BOUND ON) THE WORST-CASE MARGIN
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COMPUTING THE WORST-CASE MARGIN

Model-specific Certificates Model-agnostic Certificates
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PAGERANK-BASED MODELS

Predictions are a linear function of personalized PageRank 7

f(G)y — Tl'g H:,y

Models in this family: PPNP PushNet, Label/Feature Propagation
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BACKGROUND: PERSONALIZED PAGERANK (PPR)

Stationary distribution of a random walk with teleport

The teleport probability a controls the effective neighborhood size
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BACKGROUND: PPR AND LABEL PROPAGATION

Repeatedly diffuse intial “beliefs” using the graph
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(A)PPNP: PREDICT THEN PROPAGATE

First map node features to initial beliefs then diffuse them with PPR

s HO® = fy(X)
VOAVSTREE
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PAGERANK OPTIMIZATION

Computing - & PageRank optimization
m* =  min min n'TG: (H:y* — H:y)
G € admisible class y#y* ‘ ,
perturbed graphs

Minimize a linear function of PageRank over the set of graphs
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THREAT MODEL - WHAT IS ADMISSIBLE?

An attacker has control over a set F of fragile edges

o
QO

Global budget: perturb up to B edges in total

Local budget: perturb up to b,, edges for node v

28



PAGERANK OPTIMIZATION

Computing \ < PageRank optimization < MDP

X =
Oz . i E\ meay
E(r) MDP _ exponential Policy .Iter. . ewarg
N action set  Poly time it/ _ora=er

input graph
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PAGERANK OPTIMIZATION

Computing \ < PageRank optimization < MDP

X =
Oz . i E\ meay
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input graph

30



EXACT CERTIFICATES FOR PAGERANK-BASED MODELS
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EXACT CERTIFICATES FOR PAGERANK-BASED MODELS
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ROBUST TRAINING
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Training scheme:

(70%) Standard cross-entropy
(73%) Hinge-loss penalty
(72%) Robust cross-entropy

Trained with strength
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COMPUTING THE WORST-CASE MARGIN

Model-specific Certificates Model-agnostic Certificates

+ Takes advantage of problem
structure (exact guarantees)

— Limited applicability
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RANDOMLY SMOOTHED CLASSIFIERS

Any base classifier f: X — Y 0, 1}fl,f—>l_|_l_I:I:I:I
Randomization scheme ¢ (x) : : : : : : 'E. [T ]
o o qb(x)'\. e o o o 0//,' y*
{ ] o '\\ [ ) (] [ ) (] [ =
Certify a smoothed classifier g EEECERIN R R
R
g(x) = argmaxPr(f(90) =y) | [ 11 Bl 10 —
majority vote y* o Pr(f(¢(x)) ZY)




RANDOMLY SMOOTHED CLASSIFIERS

Guarantee that the majority does

not change in a ball B, around x

{0,13¢

JEINN,

x,
\\), d(x)

1 (x)

B,.(x)

Pr(f(¢(®) = y)
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RANDOMLY SMOOTHED CLASSIFIERS

Guarantee that the majority does

not change in a ball B, around x

f(x) =", butg(x) =

Verify whether for all X € B, (x)

?
Pr(f(¢(®) =®) > 0.5
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TWO NECESSARY IMPROVEMENTS

Sparsity-aware smoothing
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TWO NECESSARY IMPROVEMENTS

Sparsity-aware smoothing

jon= = amm=
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Dramatically more efficient: 0(n*) - 0(r)
Independent of input size

4 days — 2.5 milliseconds



DERIVING THE CERTIFICATE

The smoothed classifier is certifiably robust if

min Pr(f(¢(®)) = y*) ; 0.5

subject to:

X € B,.(x)

Find the X that minimizes the probability of the majority vote y*
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CONSTANT LIKELIHOOD RATIO REGIONS

The smoothed classifier is certifiably robust if

{0,1}¢
?
min );; Pr(¢p(X) € R;) »;, > 0.5
subject to: Pr(p(xeR) _
% € B.(x) Pr(p(MeRr)
2 Pr(p(x) € R;)
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GNNS HAVE DIFFERENT ROBUSTNESS TRADE-OFFS

B GAT B GCN & APPNP
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GNNS HAVE DIFFERENT ROBUSTNESS TRADE-OFFS

B GAT B GCN & APPNP
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GRAPH-LEVEL CLASSIFICATION
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CERTIFYING IMAGENET

Certificate Type Time | r= r = r = r =
Cohen et al. (2019) Continuous | < | sec. | 0.372 0.226 0.170 0.138
Dvijotham et al. (2020) Discrete < |sec. | 0.362 0.224 0.136 0
Lee et al. (2019) Discrete 4 days 0.538 0.338 0.244 0.176
Ours Discrete <|sec. | 0.538 0.338 0.244 0.176
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COMPUTING THE WORST-CASE MARGIN

Model-specific Certificate

+ Takes advantage of problem
structure (exact guarantees)

— Limited applicability

Model-agnostic Certificate

+ Can be applied to any classifier
for discrete data (all GNNs)

— Does not capture all
properties of the classifier
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WHY ARE THE CERTIFICATES SO PESSIMISTIC?

They treat each node independently

mutually 9
exclusive
7\
- S o \
/ 7’
receptive
field — =

Znodes mGin H[fn(G) — fn(é)]
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COLLECTIVE ROBUSTNESS CERTIFICATES

Verify how many nodes are simultaneously robust

méin Znodes H[fn(G) = fn(é)]
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FUSE MULTIPLE SINGLE-NODE CERTIFICATES

Into a provably stronger certificate by exploiting interdependence

1 1 2/3
1 1/2
/ 1 1 2/2 X collectively robust
0/3
1 1/2
[ 1 J1/1 X
€64 €12

Budget allocation problem: pick k edges to misclassify most nodes
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COLLECTIVE = DRAMATIC IMPROVEMENTS
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MORE REALISTIC THREAT MODELS
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SUMMARY

GNNs are vulnerable to small perturbations = Verify robustness

Model-specific: Exact guarantees for a family of PageRank-based models 1

—__L_

Model-agnostic: Turn any classifier into a certifiable smoothed classifier

Collective: Certify simultaneously robust nodes (dramatic improvement) M

Open: knowledge graphs, code, graph-level, representations, poisoning, ...

www.daml.in.tum.de/graph-cert

www.daml.in.tum.de/sparse-smoothing L 4 @abo]chevski
www.daml.in.tum.de/collective-robustness
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