# PROVABLY ROBUST MACHINE LEARNING ON GRAPHS

Aleksandar Bojchevski 22.03.202 I NEC Labs Europe

# CAN YOU TRUST A HORSE?

1-1 or 12 or 13 ou 14 00 15 an 15 &

32 1 3.3 1 3.4 1 35.

w 4.2043 04.40th

# MAKE SURE YOUR MODEL IS NOT A HORSE!

#### **GRAPHS ARE EVERYWHERE**



#### THE GRAPH ABSTRACTION



# **GRAPH-BASED MODELS ARE USED TO**



#### COMMON ASSUMPTIONS



observed graph

#### NOISE



The graph is an output of a complex pipeline

#### NOISE AND ADVERSARIES





observed <mark>perturbed</mark> graph

latent clean graph

#### NOISE AND ADVERSARIES





latent clean graph

observed perturbed graph

Machine learning on graphs in real-world settings

# FEATURES CAN BE PERTURBED TOO





#### **PROBLEM SETUP**

Semi-supervised node classification



### PROBLEM SETUP

Semi-supervised node classification





#### The prediction is (?)

# THE ADVERSARY WANTS TO

Change the prediction of a target node



The prediction is (1) after perturbation

### HOW EASY IS TO MANIPULATE THE PREDICTION?



Attackers can misclassify most nodes by perturbing just a few edges

Zügner, Akbarnejad, Günnemann. "Adversarial Attacks on Neural Networks for Graph Data". KDD 2018.

# **ROBUSTNESS CERTIFICATE**

Provable guarantee that the prediction does not change

```
Verify whether for all admissible perturbed graphs \tilde{G}:

argmax_{class_y} f(\tilde{G})_y \stackrel{?}{=} argmax_{f(G)_y} f(G)_y
perturbed graph - clean graph
```











## (LOWER BOUND ON) THE WORST-CASE MARGIN



# COMPUTING THE WORST-CASE MARGIN

**Model-specific** Certificates

**Model-agnostic** Certificates

#### PAGERANK-BASED MODELS

Predictions are a linear function of personalized PageRank  $\pi_G$ 

$$f(G)_{y} = \pi_{G}^{T} H_{:,y}$$
personalized PageRank
vector for a given node
- "logits" for class y

Models in this family: **PPNP**, PushNet, Label/Feature Propagation

# BACKGROUND: PERSONALIZED PAGERANK (PPR)

Stationary distribution of a random walk with teleport



The teleport probability  $\alpha$  controls the effective neighborhood size

#### BACKGROUND: PPR AND LABEL PROPAGATION

Repeatedly diffuse inital "beliefs" using the graph  

$$H^{(0)} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \vdots & \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ H^{(t+1)} = (1 - \alpha)D^{-1}AH^{(t)} + \alpha H^{(0)} \\ H^{(\infty)} = \Pi^{\text{ppr}}H^{(0)}$$

Probability that some node belongs to class  $y \propto \pi_G^T H_{:,y}$ 

# (A)PPNP: PREDICT THEN PROPAGATE

First map node features to initial beliefs then diffuse them with PPR



#### PAGERANK OPTIMIZATION



$$m^* = \min_{\substack{\tilde{G} \in \text{admisible} \\ \text{perturbed graphs}}} \min_{\substack{\text{class } y \neq y^* \\ y \neq y^*}} \pi_{\tilde{G}}^T \left( H_{:,y^*} - H_{:,y} \right)$$

Minimize a linear function of PageRank over the set of graphs

### THREAT MODEL – WHAT IS ADMISSIBLE?

An attacker has control over a set  $\mathcal{F}$  of fragile edges



General and flexible:

Scenario I:  $\mathcal{F} = \mathcal{E}$ # remove edgesScenario 2:  $\mathcal{F} = (\mathcal{V} \times \mathcal{V}) \setminus \mathcal{E}$ # add edgesScenario 3:  $\mathcal{F} = \dots$ 

Global budget: perturb up to B edges in total Local budget: perturb up to  $b_v$  edges for node v

### PAGERANK OPTIMIZATION





### PAGERANK OPTIMIZATION





#### EXACT CERTIFICATES FOR PAGERANK-BASED MODELS





- Feature Propagation
- Label Propagation

#### EXACT CERTIFICATES FOR PAGERANK-BASED MODELS



#### **ROBUST TRAINING**



# COMPUTING THE WORST-CASE MARGIN

**Model-specific** Certificates

**Model-agnostic** Certificates

+ Takes advantage of problem structure (exact guarantees)

Limited applicability

#### RANDOMLY SMOOTHED CLASSIFIERS

Any base classifier  $f: \mathcal{X} \to \mathcal{Y}$ Randomization scheme  $\phi(\mathbf{x})$ 

Certify a smoothed classifier g

$$g(\mathbf{x}) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \Pr(f(\boldsymbol{\phi}(\mathbf{x})) = y)$$
  
majority vote y\*



#### RANDOMLY SMOOTHED CLASSIFIERS

Guarantee that the majority does not change in a ball  $\mathcal{B}_r$  around  $\boldsymbol{x}$ 



#### RANDOMLY SMOOTHED CLASSIFIERS

Guarantee that the majority does not change in a ball  $\mathcal{B}_r$  around  $\boldsymbol{x}$ 

$$f(\mathbf{x}) = \mathbf{0}$$
, but  $g(\mathbf{x}) = \mathbf{0}$ 

Verify whether for all  $\widetilde{x} \in \mathcal{B}_r(x)$  $\Pr(f(\phi(\widetilde{x})) = \bullet) \stackrel{?}{>} 0.5$ 



# TWO NECESSARY IMPROVEMENTS

#### I. Sparsity-aware smoothing



# TWO NECESSARY IMPROVEMENTS

#### I. Sparsity-aware smoothing



2. Dramatically more efficient:  $O(n^4) \rightarrow O(r) \triangleleft ---$  certified radius r



# DERIVING THE CERTIFICATE

The smoothed classifier is certifiably robust if

min 
$$\Pr(f(\boldsymbol{\phi}(\widetilde{\boldsymbol{x}})) = y^*) \stackrel{?}{>} 0.5$$

subject to:

 $\widetilde{x} \in \mathcal{B}_r(x) \leftarrow -$  admissible

Find the  $\widetilde{x}$  that minimizes the probability of the majority vote  $y^*$ 

#### CONSTANT LIKELIHOOD RATIO REGIONS



#### GNNS HAVE DIFFERENT ROBUSTNESS TRADE-OFFS





#### **GNNS HAVE DIFFERENT ROBUSTNESS TRADE-OFFS**

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

#### **GRAPH-LEVEL CLASSIFICATION**

![](_page_43_Figure_1.jpeg)

# CERTIFYING IMAGENET

| Certificate             | Туре       | Time     | <i>r</i> = 1 | r = 3 | <i>r</i> = 5 | r = 7 |
|-------------------------|------------|----------|--------------|-------|--------------|-------|
| Cohen et al. (2019)     | Continuous | < I sec. | 0.372        | 0.226 | 0.170        | 0.138 |
| Dvijotham et al. (2020) | Discrete   | < I sec. | 0.362        | 0.224 | 0.136        | 0     |
| Lee et al. (2019)       | Discrete   | 4 days   | 0.538        | 0.338 | 0.244        | 0.176 |
| Ours                    | Discrete   | < I sec. | 0.538        | 0.338 | 0.244        | 0.176 |

# COMPUTING THE WORST-CASE MARGIN

**Model-specific** Certificate

+ Takes advantage of problem structure (exact guarantees)

**Model-agnostic** Certificate

+ Can be applied to any classifier for discrete data (all GNNs)

- Limited applicability

Does not capture all properties of the classifier

#### WHY ARE THE CERTIFICATES SO PESSIMISTIC?

They treat each node independently

![](_page_46_Figure_2.jpeg)

## COLLECTIVE ROBUSTNESS CERTIFICATES

Verify how many nodes are simultaneously robust

![](_page_47_Figure_2.jpeg)

# FUSE MULTIPLE SINGLE-NODE CERTIFICATES

Into a **provably stronger** certificate by exploiting interdependence

![](_page_48_Figure_2.jpeg)

Budget allocation problem: pick k edges to misclassify most nodes

#### COLLECTIVE = DRAMATIC IMPROVEMENTS

![](_page_49_Figure_1.jpeg)

#### MORE REALISTIC THREAT MODELS

![](_page_50_Figure_1.jpeg)

# SUMMARY

GNNs are vulnerable to small perturbations  $\Rightarrow$  Verify robustness

Model-specific: Exact guarantees for a family of PageRank-based models Model-agnostic: Turn any classifier into a certifiable smoothed classifier Collective: Certify simultaneously robust nodes (dramatic improvement)

Open: knowledge graphs, code, graph-level, representations, poisoning, ...

www.daml.in.tum.de/graph-cert www.daml.in.tum.de/sparse-smoothing www.daml.in.tum.de/collective-robustness

![](_page_51_Picture_5.jpeg)