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CAN YOU TRUST A HORSE?

MAKE SURE YOUR MODEL IS NOT A HORSE!



GRAPHS ARE EVERYWHERE
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molecules

the brain

code

social

networks

protein

interactions



THE GRAPH ABSTRACTION
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GRAPH-BASED MODELS ARE USED TO
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Classify breast cancer

Detect fraud

Recommend items

Classify proteins

Filter spam

Predict disease-gene associations

Induce object-oriented perception and reasoning



COMMON ASSUMPTIONS
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observed graph



NOISE
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observed graph

The graph is an output of a complex pipeline



NOISE AND ADVERSARIES
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latent clean graph observed perturbed graph

missing

spurious



NOISE AND ADVERSARIES
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Machine learning on graphs in real-world settings

latent clean graph observed perturbed graph

missing

spurious



FEATURES CAN BE PERTURBED TOO
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latent clean graph observed perturbed graph



Semi-supervised node classification

PROBLEM SETUP
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Semi-supervised node classification

The prediction is

PROBLEM SETUP
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?

𝑓 ෨𝐺
2
𝑓 ෨𝐺

3
𝑓 ෨𝐺

1

𝑚 classification margin

𝑚 > 0 ⇒ correct



THE ADVERSARY WANTS TO

Change the prediction of a target node

The prediction is     after perturbation
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2
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3
𝑓 ෨𝐺
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𝑚
classification margin

𝑚 < 0 ⇒ wrong



HOW EASY IS TO MANIPULATE THE PREDICTION?

Attackers can misclassify most nodes by perturbing just a few edges

14Zügner, Akbarnejad, Günnemann. “Adversarial Attacks on Neural Networks for Graph Data”. KDD 2018.
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ROBUSTNESS CERTIFICATE

Provable guarantee that the prediction does not change

Verify whether for all admissible perturbed graphs ෨𝐺:

argmax
class 𝑦

𝑓 ෨𝐺
𝑦
=
?
argmax
class 𝑦

𝑓 𝐺 𝑦
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clean graphperturbed graph

e.g. all graphs that differ in up to 5 edges



CERTIFICATE ILLUSTRATION
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𝑓(            )       

CERTIFICATE ILLUSTRATION
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𝑓(            )       

CERTIFICATE ILLUSTRATION
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decision

boundary
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CERTIFICATE ILLUSTRATION
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decision

boundary

admissible perturbations

𝑎



CERTIFICATE ILLUSTRATION
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decision

boundary

adversarial example

admissible perturbations

𝑎

𝑏

෨𝑏



(LOWER BOUND ON) THE WORST-CASE MARGIN
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decision

boundary

adversarial example

admissible perturbations

worst-case

margin

𝑎

𝑏
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COMPUTING THE WORST-CASE MARGIN

Model-specific Certificates Model-agnostic Certificates
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PAGERANK-BASED MODELS

Predictions are a linear function of personalized PageRank 𝝅𝐺

𝑓 𝐺 𝑦 = 𝝅𝐺
𝑇 𝑯:,𝑦

Models in this family: PPNP, PushNet, Label/Feature Propagation 
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personalized PageRank 

vector for a given node “logits” for class 𝑦



BACKGROUND: PERSONALIZED PAGERANK (PPR) 

Stationary distribution of a random walk with teleport

The teleport probability 𝛼 controls the effective neighborhood size 

𝛼
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BACKGROUND: PPR AND LABEL PROPAGATION

Repeatedly diffuse intial “beliefs” using the graph

Probability that some node belongs to class 𝑦 ∝ 𝝅𝐺
𝑇 𝑯:,𝑦
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𝑯(𝑡+1) = 1 − 𝛼 𝑫−𝟏𝑨𝑯(𝑡) + 𝛼 𝑯(0)

𝑯(∞) = 𝚷ppr𝑯(0)

“average” over neighbors

𝑯(0) =

0 𝟏 0
0 0 0
𝟏 0 0
0 0 𝟏

⋮



(A)PPNP: PREDICT THEN PROPAGATE

First map node features to initial beliefs then diffuse them with PPR
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∗ +⋯∗∗ + ∗ + ∗∗ + ∗ + +𝑓(𝐺) =

𝝅𝐺 =

Klicpera, Bojchevski, Günnemann. “Predict then Propagate: Graph Neural Networks Meet Personalized PageRank”. ICLR 2019.

𝑯(0) = 𝑓𝜃(𝑿)



PAGERANK OPTIMIZATION

Computing                     ⇔ PageRank optimization

Minimize a linear function of PageRank over the set of graphs
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𝑚∗ = min
෨𝐺 ∈ admisible

perturbed graphs

min
class 𝑦≠𝑦∗

𝝅 ෨𝐺
𝑇 𝑯:,𝑦∗ −𝑯:,𝑦

Bojchevski, Günnemann. “Certifiable Robustness to Graph Perturbations”. NeurIPS 2019.



THREAT MODEL – WHAT IS ADMISSIBLE?

An attacker has control over a set ℱ of fragile edges

Global budget: perturb up to 𝐵 edges in total

Local budget: perturb up to 𝑏𝑣 edges for node 𝑣
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𝑖
General and flexible:

Scenario 1:ℱ = ℰ # remove edges

Scenario 2: ℱ = (𝒱 × 𝒱)\ℰ # add edges

Scenario 3: ℱ = …

Bojchevski, Günnemann. “Certifiable Robustness to Graph Perturbations”. NeurIPS 2019.



PAGERANK OPTIMIZATION

Computing                     ⇔ PageRank optimization ⇔ MDP
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𝜋∗
𝜋, 𝑥
init

exponential

action set

Policy Iter.

poly time

𝔼 𝒓 MDP𝑖

input graph

Bojchevski, Günnemann. “Certifiable Robustness to Graph Perturbations”. NeurIPS 2019.



PAGERANK OPTIMIZATION

Computing                     ⇔ PageRank optimization ⇔ MDP
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𝜋∗
𝜋, 𝑥
init

exponential

action set

Policy Iter.

poly time

𝔼 𝒓 MDP𝑖

input graph

binary

action set

min 𝒄𝑇𝒙
𝑠. 𝑡. 𝑨𝒙 = 𝒃
𝒙𝑇𝑸𝒙 = 𝟎

QCLP RLTσ(𝒓) MDP

auxiliary graph

𝑖

Bojchevski, Günnemann. “Certifiable Robustness to Graph Perturbations”. NeurIPS 2019.



EXACT CERTIFICATES FOR PAGERANK-BASED MODELS
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∎ PPNP 

∎ Feature Propagation 

∎ Label Propagation 

Bojchevski, Günnemann. “Certifiable Robustness to Graph Perturbations”. NeurIPS 2019.



EXACT CERTIFICATES FOR PAGERANK-BASED MODELS
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Provably not robust

Provably robust

Bojchevski, Günnemann. “Certifiable Robustness to Graph Perturbations”. NeurIPS 2019.



ROBUST TRAINING
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Training scheme:

(70%) Standard cross-entropy

(73%) Hinge-loss penalty

(72%) Robust cross-entropy

Trained with strength

Bojchevski, Günnemann. “Certifiable Robustness to Graph Perturbations”. NeurIPS 2019.



COMPUTING THE WORST-CASE MARGIN

Model-specific Certificates

+Takes advantage of problem 

structure (exact guarantees)

− Limited applicability

Model-agnostic Certificates
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RANDOMLY SMOOTHED CLASSIFIERS 

Any base classifier 𝑓:𝒳 → 𝒴

Randomization scheme 𝜙 𝒙

Certify a smoothed classifier 𝑔

𝑔 𝒙 = argmax
𝑦∈𝒴

Pr 𝑓 𝜙 𝒙 = 𝑦

majority vote 𝑦∗
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Pr 𝑓 𝜙 𝒙 = 𝑦

𝜙 𝒙

𝜙 𝒙

𝜙 𝒙

0, 1 𝑑

𝑦∗

𝒙

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



RANDOMLY SMOOTHED CLASSIFIERS 

Guarantee that the majority does 

not change in a ball ℬ𝑟 around 𝒙

36

Pr 𝑓 𝜙 𝒙 = 𝑦

𝜙 𝒙

𝜙 𝒙

𝜙 𝒙

0, 1 𝑑

𝑦∗ℬ𝑟(𝒙)

𝒙

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



RANDOMLY SMOOTHED CLASSIFIERS 

Guarantee that the majority does 

not change in a ball ℬ𝑟 around 𝒙

𝑓 𝒙 = ,  but g 𝒙 =

Verify whether for all ෥𝒙 ∈ ℬ𝑟(𝒙)

Pr 𝑓 𝜙 ෥𝒙 = >
?
0.5
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Pr 𝑓 𝜙 𝒙 = 𝑦

𝜙 𝒙

𝜙 𝒙

𝜙 𝒙

0, 1 𝑑

𝑦∗

𝒙

ℬ𝑟(𝒙)

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



TWO NECESSARY IMPROVEMENTS

1. Sparsity-aware smoothing
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𝑝−𝑝+ 1 − 𝑝+ 1 − 𝑝−

𝜙 𝒙 :

𝒙:

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



TWO NECESSARY IMPROVEMENTS

1. Sparsity-aware smoothing

2. Dramatically more efficient: 𝑂 𝑛4 → 𝑂 𝑟

• Independent of input size 

• 4 days → 2.5 milliseconds 

39

𝑝−𝑝+ 1 − 𝑝+ 1 − 𝑝−

𝜙 𝒙 :

𝒙:

number of nodes 𝑛

certified radius 𝑟

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



DERIVING THE CERTIFICATE

The smoothed classifier is certifiably robust if

minPr 𝑓 𝜙 ෥𝒙 = 𝑦∗ >
?
0.5

subject to:

෥𝒙 ∈ ℬ𝑟 𝒙

Find the ෥𝒙 that minimizes the probability of the majority vote 𝑦∗

40Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020

admissible



CONSTANT LIKELIHOOD RATIO REGIONS

The smoothed classifier is certifiably robust if

minσ𝑖 Pr 𝜙 ෥𝒙 ∈ ℛ𝑖 ℎ𝑖 >
?
0.5

subject to:

෥𝒙 ∈ ℬ𝑟 𝒙

ℎ𝑖 ∈ [0, 1]

σ𝑖 Pr 𝜙 𝒙 ∈ ℛ𝑖 ℎ𝑖 = 𝑝𝑦∗
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0, 1 𝑑

Pr 𝜙 𝒙 ∈ ℛ𝑖

Pr 𝜙 ෥𝒙 ∈ ℛ𝑖
= 𝑐𝑖ℛ𝑖

ℛ𝑖−1

ℛ𝑖+1

constant

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020

admissible



GNNS HAVE DIFFERENT ROBUSTNESS TRADE-OFFS
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∎ GAT  ∎ GCN ∎ APPNP 

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



GNNS HAVE DIFFERENT ROBUSTNESS TRADE-OFFS
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∎ GAT  ∎ GCN ∎ APPNP 

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



GRAPH-LEVEL CLASSIFICATION

44Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



CERTIFYING IMAGENET
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Certificate Type Time 𝑟 = 1 𝑟 = 3 𝑟 = 5 𝑟 = 7

Cohen et al. (2019) Continuous < 1 sec. 0.372 0.226 0.170 0.138

Dvijotham et al. (2020) Discrete < 1 sec. 0.362 0.224 0.136 0

Lee et al. (2019) Discrete 4 days 0.538 0.338 0.244 0.176 

Ours Discrete < 1 sec. 0.538 0.338 0.244 0.176 

Bojchevski, Klicpera, Günnemann. “Efficient Robustness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing”. ICML 2020



COMPUTING THE WORST-CASE MARGIN

Model-specific Certificate

+Takes advantage of problem 
structure (exact guarantees)

− Limited applicability

Model-agnostic Certificate

+ Can be applied to any classifier 
for discrete data (all GNNs)

− Does not capture all 
properties of the classifier
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WHY ARE THE CERTIFICATES SO PESSIMISTIC?

They treat each node independently

47

mutually

exclusive

…
receptive

field 

σnodesmin෨𝐺
𝕀 𝑓𝑛 𝐺 = 𝑓𝑛( ෨𝐺)

Schuchardt, Bojchevski, Klicpera, Günnemann. “Collective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks”. ICLR 2021



COLLECTIVE ROBUSTNESS CERTIFICATES

Verify how many nodes are simultaneously robust 
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mutually

exclusive

receptive

field 

Schuchardt, Bojchevski, Klicpera, Günnemann. “Collective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks”. ICLR 2021

…

σnodesmin෨𝐺
𝕀 𝑓𝑛 𝐺 = 𝑓𝑛( ෨𝐺) min

෨𝐺
σnodes 𝕀 𝑓𝑛 𝐺 = 𝑓𝑛( ෨𝐺)



Into a provably stronger certificate by exploiting interdependence

Budget allocation problem: pick 𝑘 edges to misclassify most nodes

FUSE MULTIPLE SINGLE-NODE CERTIFICATES
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each row

encodes the

receptive

field of a node

allocated min. required (per-node)

collectively robust

𝟏 𝟏 𝟏 𝟏 𝟐 / 𝟑

𝟏 𝟏 𝟏 𝟏 𝟐 /

𝟏 𝟏 𝟏 𝟐 /

𝟏 𝟏 𝟏 𝟏 𝟐 /

𝟏 𝟏 𝟏 𝟐 /

𝟏 𝟏 𝟐 /

𝟐 / 𝟑 ✔

𝟏 / 𝟐 ✔

𝟐 / 𝟐 ✖

𝟎 / 𝟑 ✔

𝟏 / 𝟐 ✔

𝟏 / 𝟏 ✖

𝒆𝟐𝟏 𝒆𝟔𝟒 𝒆𝟓𝟐 𝒆𝟑𝟑 𝒆𝟏𝟐 𝒆𝟑𝟔

attacked edges

Schuchardt, Bojchevski, Klicpera, Günnemann. “Collective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks”. ICLR 2021



COLLECTIVE = DRAMATIC IMPROVEMENTS

50Schuchardt, Bojchevski, Klicpera, Günnemann. “Collective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks”. ICLR 2021



MORE REALISTIC THREAT MODELS
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SUMMARY

GNNs are vulnerable to small perturbations ⇒Verify robustness

Model-specific: Exact guarantees for a family of PageRank-based models

Model-agnostic: Turn any classifier into a certifiable smoothed classifier 

Collective: Certify simultaneously robust nodes (dramatic improvement)

Open: knowledge graphs, code, graph-level, representations, poisoning, …
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@abojchevski
www.daml.in.tum.de/graph-cert

www.daml.in.tum.de/sparse-smoothing

www.daml.in.tum.de/collective-robustness


