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tl;dr Robustness Certificate

Guarantee that the prediction 
does not change for all ෥𝒙 in a ball 
ℬ𝑟(𝒙) around the input 𝒙

Here ℬ𝑟(𝒙) is the 𝐿0 ball: the 
attacker can change up to 𝑟 bits
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Given any base classifier for discrete data

Certify a smoothed classifier w.r.t. an 𝐿0 adversary

Graph Neural Network

ResNet
Transformer

DNN
…

Node-level Classification
Graph-level Classification

Discretized Images
Text

Molecules (SMILES)
… 

tl;dr Robustness Certificate
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Sparsity-aware smoothing improves guarantees

Reduced complexity: 𝑂(𝑑3) to 𝑂 r

Results on Graphs, MNIST, ImageNet, …

tl;dr Tight, Efficient, & Sparsity-Aware
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tl;dr Certifying Graph Neural Networks

Any GNN: GCN, GAT, PPNP, GIN, …

Perturbing both graph and node attributes

First certificate for graph-level classification
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Perturbations:
inserted edge
deleted edge
perturbed attribute



tl;dr Certifying Graph Neural Networks

Different GNNs have different robustness trade-offs
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∎ GAT  ∎ GCN ∎ APPNP 

Perturbing Attributes Perturbing Graph Structure



Pr 𝑓 𝜙 𝒙 = 𝑦

𝜙 𝒙

𝜙 𝒙

Randomly Smoothed Classifiers 

Given:

• Any base classifier 𝑓:𝒳 → 𝒴

• Any randomization scheme 𝜙 𝒙

Certify a smoothed classifier 𝑔

𝑔 𝒙 = argm𝑎𝑥
𝑦∈𝒴

Pr 𝑓 𝜙 𝒙 = 𝑦

majority vote 𝑦∗

A. Bojchevski Efficient Robustness Certificates for Discrete Data 7

𝜙 𝒙

0, 1 𝑑

𝒙

𝑦∗



Pr 𝑓 𝜙 𝒙 = 𝑦

Certifying the Smoothed Classifiers 
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𝜙 𝒙

𝜙 𝒙

𝜙 𝒙

Majority vote 𝑔(𝒙) changes slowly

Example: 𝑓 𝒙 = , but g 𝒙 =

0, 1 𝑑

𝒙
𝑦∗



Pr 𝑓 𝜙 𝒙 = 𝑦

Randomly Smoothed Classifiers 
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𝜙 𝒙

𝜙 𝒙

𝜙 𝒙

Goal:

Guarantee that the majority votes 
does not change for all ෥𝒙 in a ball 
ℬ𝑟(𝒙) around the input 𝒙

For all ෥𝒙, Pr 𝑓 𝜙 ෥𝒙 = >
?
0.5

0, 1 𝑑

ℬ𝑟(𝒙)

𝒙

𝑦∗



Choosing the Randomization Scheme 𝜙(𝒙)

First idea: Randomly flip bits with probability 𝑝

Higher 𝑝 leads to better guarantees

Problem: For sparse data even moderately small 𝑝 destroys the data

𝑝𝑝 1 − 𝑝 1 − 𝑝
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𝜙 𝒙 :

𝒙:



Choosing the Randomization Scheme 𝜙(𝒙)

Sparsity aware: Treat zeros separately

Graphs: Insert edges with 𝑝+, delete edges with 𝑝−

We can afford to set 𝑝− relatively high and 𝑝+ relatively low

without introducing too much noise in the data

𝑝−𝑝+ 1 − 𝑝+ 1 − 𝑝−
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𝜙 𝒙 :

𝒙:



Deriving the Certificate

The smoothed classifier is certifiably robust if

min Pr 𝑓 𝜙(෥𝒙) = 𝑦∗ >
?
0.5

subject to:

෥𝒙 ∈ ℬ𝑟 𝒙

Find the ෥𝒙 that minimizes the probability of the majority vote 𝑦∗
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Constant Likelihood Ratio Regions

The smoothed classifier is certifiably robust if

minσ𝑖 Pr 𝜙 ෥𝒙 ∈ ℛ𝑖 ℎ𝑖 >
?
0.5

subject to:

෥𝒙 ∈ ℬ𝑟 𝒙

ℎ𝑖 ∈ [0, 1]

σ𝑖 Pr 𝜙 𝒙 ∈ ℛ𝑖 ℎ𝑖 = 𝑝𝑦∗

Efficient Robustness Certificates for Discrete DataA. Bojchevski 13

0, 1 𝑑

Pr 𝜙 𝒙 ∈ ℛ𝑖

Pr 𝜙 ෥𝒙 ∈ ℛ𝑖
= 𝑐𝑖

ℛ𝑖

ℛ𝑖−1

ℛ𝑖+1

constant



Constant Likelihood Ratio Regions

Observation 1: We consider w.l.o.g. only dimensions where 𝒙𝑖 ≠ ෥𝒙𝑖
Observation 2: Number of regions is independent of 𝑑

Threat model: ℬ𝑟𝑎,𝑟𝑑 = ෥𝒙 ∶ adde𝑑 ≤ 𝑟𝑎 bits, deleted ≤ 𝑟𝑑 bits

𝑟𝑎 𝑟𝑑𝑑 − 𝑟𝑎 − 𝑟𝑑

෥𝒙:

𝒙:

𝒙𝑖 = ෥𝒙𝑖 𝒙𝑖 ≠ ෥𝒙𝑖
Pr 𝜙 𝒙𝑖 = 𝑧𝑖 = Pr 𝜙 ෥𝒙𝑖 = 𝑧𝑖
where 𝒙𝑖 = ෥𝒙𝑖
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GNNs: Setup

Threat model: Perturb either graph structure or attributes

Task: Semi-supervised node classification

?

? ?

?

?

𝜙 𝒙 𝜙 𝒙

ℬ𝑟𝑎,𝑟𝑑

0, 1 𝑛2
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Results on Node Classification

GNNs are more robust to edge deletion than edge addition
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Perturbing Attributes Perturbing Graph Structure

∎ GAT  ∎ GCN ∎ APPNP 



Results on Node Classification
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Models are more robust to edge deletion than edge addition

Average max 𝑟𝑑 radius is 6.47 with sparse smoothing and 1.75 without 



Results on Graph Classification
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First certificate for the graph-level classification task



Results on MNIST
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Sparsity-aware smoothing improves the certified ratio



Other results: ImageNet
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Dramatically improved runtime for the exact same (tight) certificate

Certificate Type Time 𝑟 = 1 𝑟 = 3 𝑟 = 5 𝑟 = 7

Cohen et al. (2019) Continuous < 1 sec. 0.372 0.226 0.170 0.138

Dvijotham et al. (2020) Discrete < 1 sec. 0.362 0.224 0.136 0

Lee et al. (2019) Discrete 4 days 0.538 0.338 0.244 0.176 

Ours Discrete < 1 sec. 0.538 0.338 0.244 0.176 



Model-agnostic, Tight,
Efficient, & Sparsity-Aware
Robustness Certificate
Code & Project Page: https://www.daml.in.tum.de/sparse_smoothing/

Twitter: @abojchevski
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