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Graph Neural Networks

Powerful approach for solving many network mining tasks

However:

Scale poorly to massive graphs with millions of nodes 

Existing techniques for scaling up are still too expensive
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Main scalability bottleneck: 
Recursive message passing
Resulting in a neighborhood explosion
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Recursive message passing

The hidden representation for node 𝑖

is a sum of messages from its neighbors 

ℎ𝑖
(𝑙+1)

= σ𝑗∈𝒩𝑖
𝑓𝜃 ℎ𝑗

𝑙
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Recursive message passing
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Recursive message passing
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Recursive message passing
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Recursive message passing
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Only few nodes are important
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Only few nodes are important

However, we have to:

Obtain the importance a priori 

Carefully weight the contributions
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Personalized PageRank 

Stationary distribution of a random walk with teleport

The teleport probability 𝛼 controls the effective neighborhood size 
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𝛼



Predict then Propagate: Diffuse individual logits using PageRank

Neural network (depth & structure) is decoupled from propagation

From (A)PPNP to PPRGo
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diffuse logits with PageRankmap node features to logits

MLP

CNN

RNN

𝑥𝑗 ℎ𝑗 𝑧𝑖 = 𝜋𝑖
𝑇
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From (A)PPNP to PPRGo
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From (A)PPNP to PPRGo
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From (A)PPNP to PPRGo
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From (A)PPNP to PPRGo
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From (A)PPNP to PPRGo
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From (A)PPNP to PPRGo

KDD 2020, Bojchevski, Klicpera et al. Scaling Graph Neural Networks with Approximate PageRank 18
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Computing PageRank

Training

Approximate sparse PPR

1 diffusion step

Inference

1-3 Power Iterations steps

Sparse Inference
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Approximate PageRank for training nodes

Approximate the PageRank vector with ACL’s algorithm

The algorithm is local (needs only neighbors) and highly parallelizable

Result: Sparse vector with PageRank scores of only the relevant nodes
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𝜋𝑖
(𝜖)

=



Power iteration and sparse inference

Computing predictions: 𝛼 I𝑛 − 1 − 𝛼 D−1A −1 ⋅ H

Power Iteration: 𝑄(0) = H,          𝑄(𝑝+1) = 𝛼H + 1 − 𝛼 D−1A𝑄(𝑝)

Sparse Inference: forward pass only for a fraction of nodes

𝐻 =

− ℎ1 −
− ℎ2 −

⋮
− ℎ𝑛 −

≈

− 0 −
− ℎ𝑗 −

⋮
− 0 −
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each row is a PPR vector for one node



PPRGo

1. Precompute approximate sparse PPR vectors 𝜋𝑖
𝜖 for training nodes

2. Train the mapping 𝑓𝜃(𝑥𝑗) using SGD

3. Run Power Iteration during inference

All components can be implemented in a large-scale distributed setup
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Experimental setup

Semi-supervised node classification

Sparsely labeled scenario

We introduce the MAG-Scholar dataset
• 12.4M nodes, 173M edges, and 2.8M features

Measure: preprocessing + training + inference time and memory.
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PPRGo utilizes additional workers best
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PPRGo
GNN 2-hop
Fast-GCN



PPRGo is most efficient
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PPRGo
GNN 2-hop
GNN 3-hop



Performance breakdown on Reddit

Runtime (s) Memory (GB) Accuracy

Pre-proc. Training Inference Total RAM GPU

Cluster-GCN 1175 953 186 2310

SGC 313 0.53 7470 7780

PPRGo (1 PI step) 2.26 4.67 6.19 13.10

PPRGo (2 PI steps) 2.22 4.1 10.5 16.8
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Performance breakdown on Reddit

Runtime (s) Memory (GB) Accuracy

Pre-proc. Training Inference Total RAM GPU

Cluster-GCN 1175 953 186 2310 20.97 0.071 17.1

SGC 313 0.53 7470 7780 10.12 0.027 12.1

PPRGo (1 PI step) 2.26 4.67 6.19 13.10 5.56 0.073 26.5

PPRGo (2 PI steps) 2.22 4.1 10.5 16.8 5.42 0.073 26.6
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Performance on different datasets
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PubMed Reddit Mag-Scholar-C

Time (s) Mem. Acc. Time (s) Mem. Acc. Time (s) Mem. Acc.

Cluster-GCN 54.3 1.90 74.5 2310 21.04 17.1 >24h - -

SGC 5.3 2.17 75.7 7780 10.15 12.1 >24h - -

PPRGo (𝜖 = 10−4, 𝑘 = 32) 3.8 1.63 75.2 16.8 5.49 26.5 98.9 24.51 69.3

PPRGo (𝜖 = 10−2, 𝑘 = 32) 2.9 1.62 73.7 16.3 5.61 26.6 89.0 24.59 63.4



Performance on different datasets
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PubMed Reddit Mag-Scholar-C

Time (s) Mem. Acc. Time (s) Mem. Acc. Time (s) Mem. Acc.

Cluster-GCN 54.3 1.90 74.5 2310 21.04 17.1 >24h - -

SGC 5.3 2.17 75.7 7780 10.15 12.1 >24h - -

PPRGo (𝜖 = 10−4, 𝑘 = 32) 3.8 1.63 75.2 16.8 5.49 26.5 98.9 24.51 69.3

PPRGo (𝜖 = 10−2, 𝑘 = 32) 2.9 1.62 73.7 16.3 5.61 26.6 89.0 24.59 63.4



Trade speed for accuracy
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Accuracy (%) Runtime (s)



Efficient inference
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PPRGo
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Utilizes distributed training significantly better

< 2 minutes runtime on a single machine for 12M nodes

Speed-up at no cost to accuracy

www.daml.in.tum.de/pprgo

@abojchevski, @klicperajo
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