Scaling Graph Neural Networks with Approximate PageRank

Aleksandar Bojchevski*, Johannes Klicpera*

Bryan Perozzi, Amol Kapoor, Martin Blais,

Benedek Rózemberczki, Michal Lukasik

Stephan Günnemann

KDD 2020: Applied Data Science Track

Graph Neural Networks

Powerful approach for solving many network mining tasks

However:

Scale poorly to massive graphs with millions of nodes

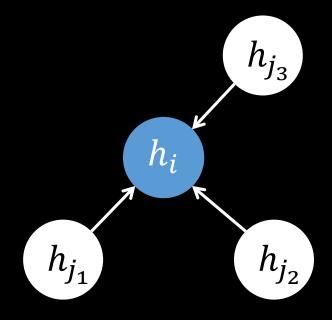
Existing techniques for scaling up are still too expensive

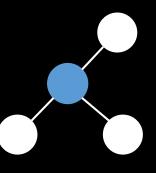
Main scalability bottleneck: Recursive message passing

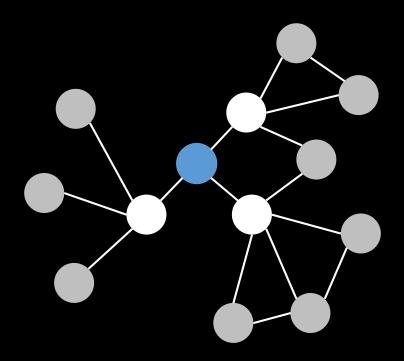
Resulting in a neighborhood explosion

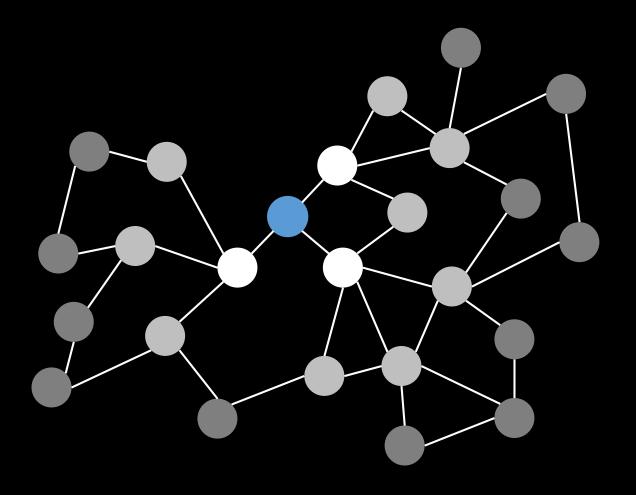
The hidden representation for node *i* is a sum of messages from its neighbors

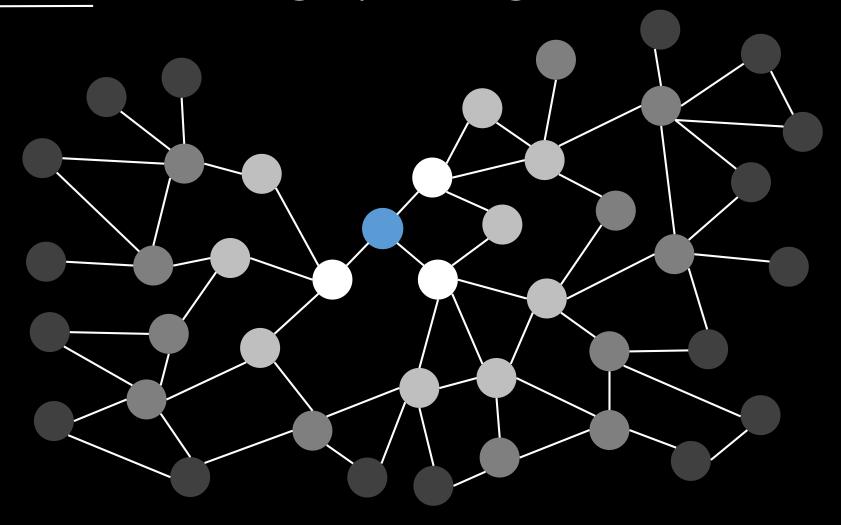
$$h_i^{(l+1)} = \sum_{j \in \mathcal{N}_i} f_{\theta} \left(h_j^{(l)} \right)$$



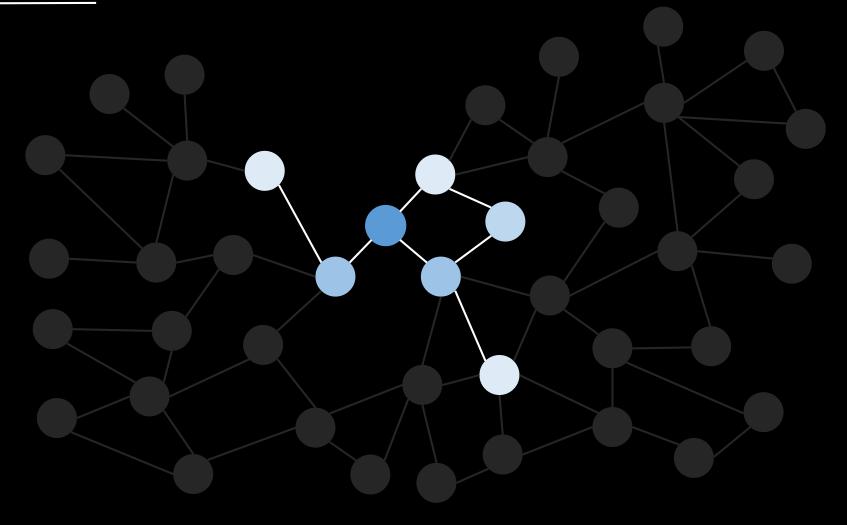








Only few nodes are important

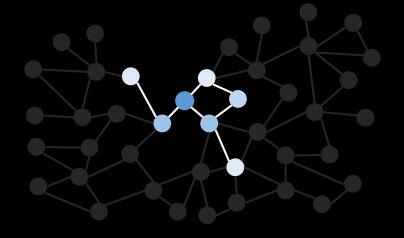


Only few nodes are important

However, we have to:

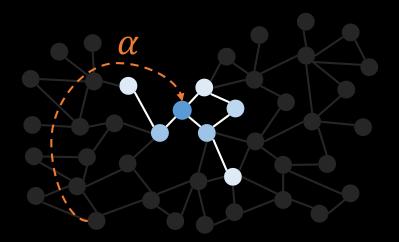
Obtain the importance a priori

Carefully weight the contributions



Personalized PageRank

Stationary distribution of a random walk with teleport



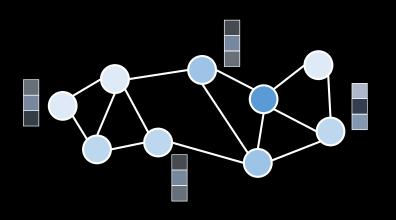
The teleport probability α controls the effective neighborhood size

Predict then Propagate: Diffuse individual logits using PageRank

Neural network (depth & structure) is decoupled from propagation

map node features to logits

diffuse logits with PageRank

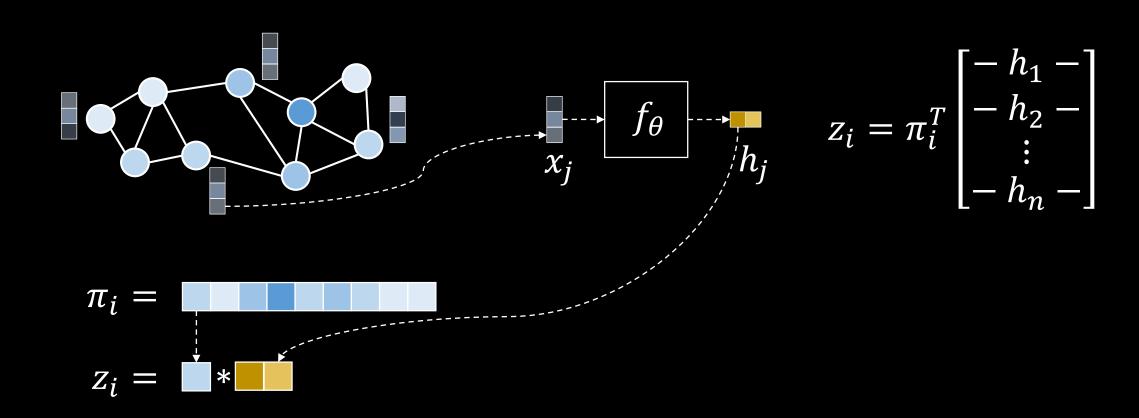


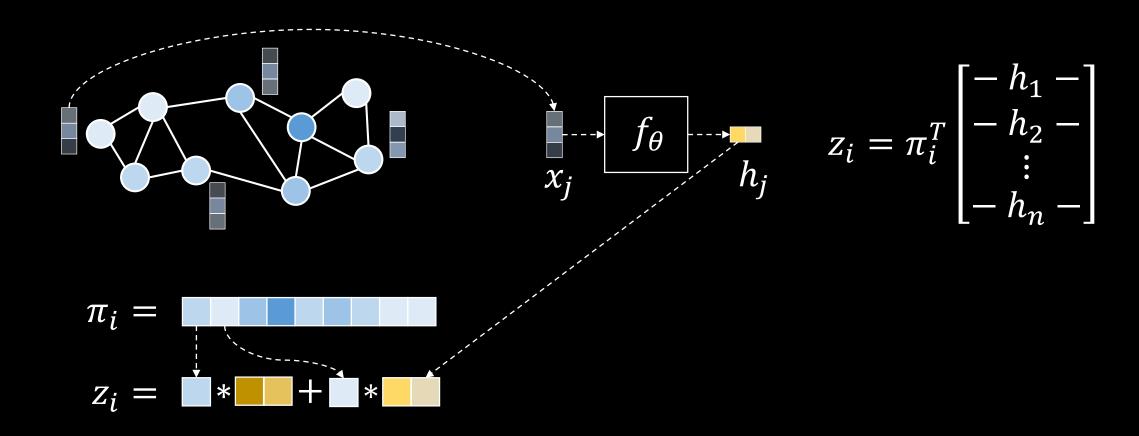
$$f_{\theta}$$

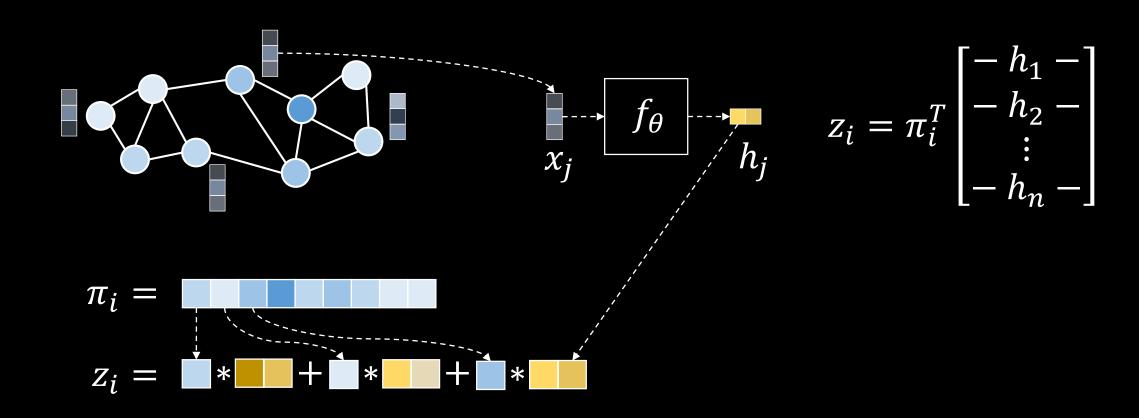
$$z_i = \pi_i^T egin{bmatrix} -h_1 - \ -h_2 - \ dots \ -h_n - \end{bmatrix}$$

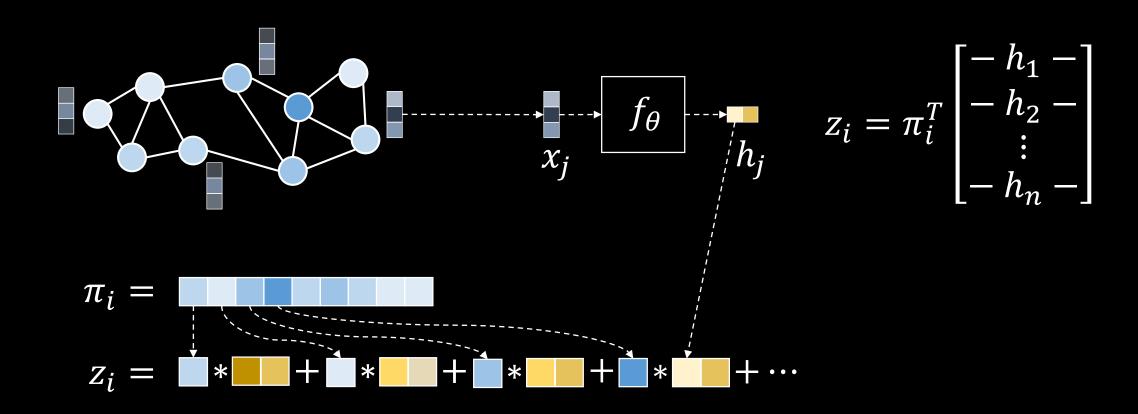
$$\pi_i =$$

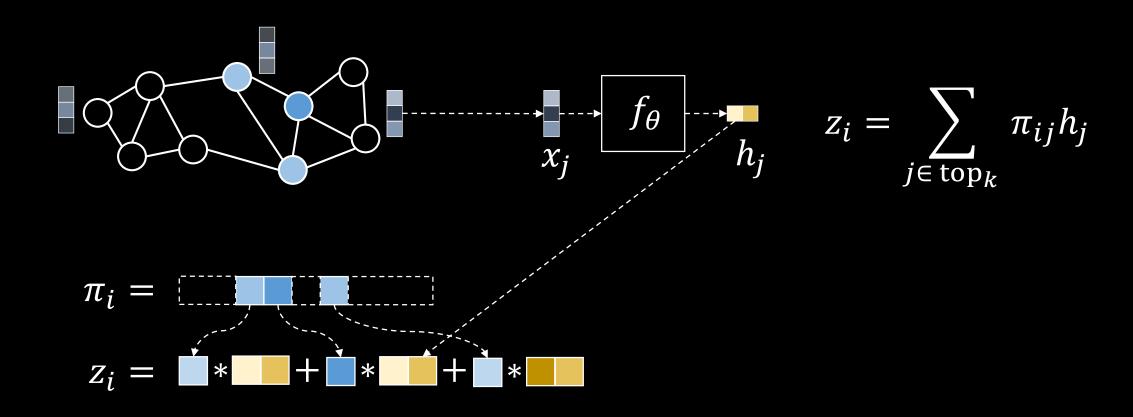
$$z_i =$$











Computing PageRank

Training

Approximate sparse PPR
1 diffusion step

Inference

1-3 Power Iterations steps
Sparse Inference

Approximate PageRank for training nodes

Approximate the PageRank vector with ACL's algorithm

$$\pi_i^{(\epsilon)} = \square$$

The algorithm is local (needs only neighbors) and highly parallelizable

Result: Sparse vector with PageRank scores of only the relevant nodes

Power iteration and sparse inference

Computing predictions:
$$\alpha (I_n - (1 - \alpha)D^{-1}A)^{-1}$$
 · H each row is a PPR vector for one node

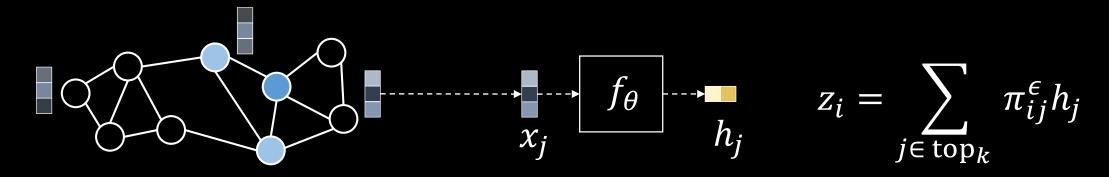
Power Iteration:
$$Q^{(0)} = H$$
, $Q^{(p+1)} = \alpha H + (1 - \alpha)D^{-1}AQ^{(p)}$

Sparse Inference: forward pass only for a fraction of nodes

$$H = \begin{bmatrix} -h_1 - \\ -h_2 - \\ \vdots \\ -h_n - \end{bmatrix} pprox \begin{bmatrix} -0 - \\ -h_j - \\ \vdots \\ -0 - \end{bmatrix}$$

• PPRGo

- 1. Precompute approximate sparse PPR vectors π_i^ϵ for training nodes
- 2. Train the mapping $f_{\theta}(x_i)$ using SGD
- 3. Run Power Iteration during inference



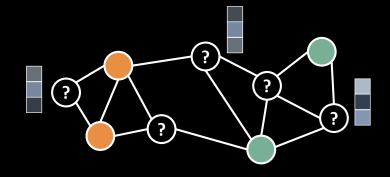
All components can be implemented in a large-scale distributed setup

Experimental setup

Semi-supervised node classification Sparsely labeled scenario

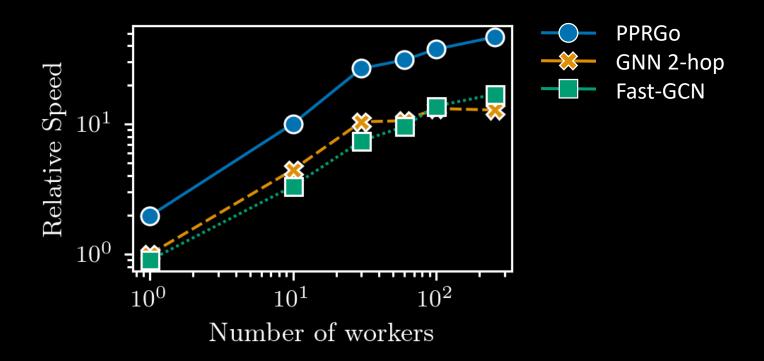
We introduce the MAG-Scholar dataset

• 12.4M nodes, 173M edges, and 2.8M features

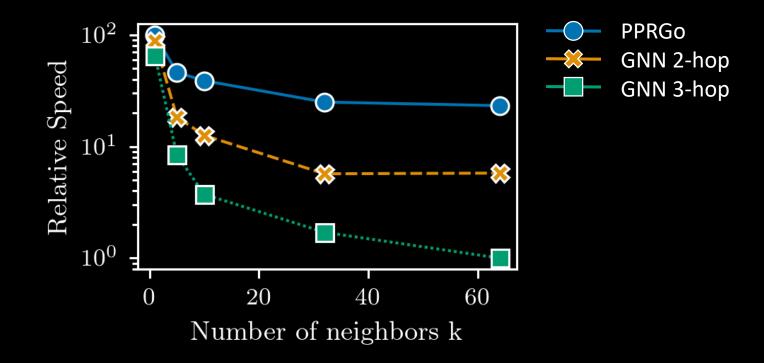


Measure: preprocessing + training + inference time and memory.

PPRGo utilizes additional workers best



PPRGo is most efficient



Performance breakdown on Reddit

			Runtime (s)		Memo	Accuracy	
	Pre-proc.	Training	Inference	Total	RAM	GPU	
Cluster-GCN	1175	953	186	2310			
SGC	313	0.53	7470	7780			
PPRGo (1 PI step)	2.26	4.67	6.19	13.10			
PPRGo (2 PI steps)	2.22	4.1	10.5	16.8			

Performance breakdown on Reddit

			Runtime (s)		Memo	Accuracy	
	Pre-proc.	Training	Inference	Total	RAM	GPU	
Cluster-GCN	1175	953	186	2310	20.97	0.071	17.1
SGC	313	0.53	7470	7780	10.12	0.027	12.1
PPRGo (1 PI step)	2.26	4.67	6.19	13.10	5.56	0.073	26.5
PPRGo (2 PI steps)	2.22	4.1	10.5	16.8	5.42	0.073	26.6

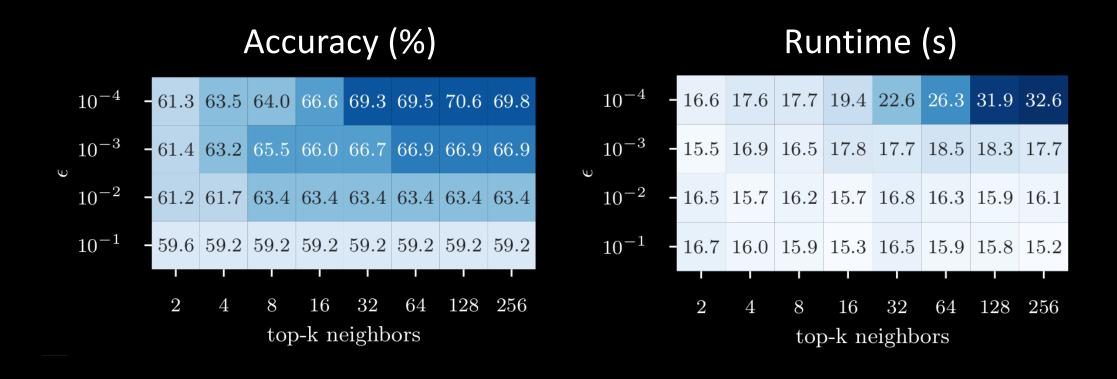
Performance on different datasets

	PubMed			Reddit			Mag-Scholar-C		
	Time (s)	Mem.	Acc.	Time (s)	Mem.	Acc.	Time (s)	Mem.	Acc.
Cluster-GCN	54.3	1.90	74.5	2310	21.04	17.1	>24h	-	-
SGC	5.3	2.17	75.7	7780	10.15	12.1	>24h	-	-
PPRGo ($\epsilon = 10^{-4}, k = 32$)	3.8	1.63	75.2	16.8	5.49	26.5	98.9	24.51	69.3
PPRGo ($\epsilon = 10^{-2}, k = 32$)	2.9	1.62	73.7	16.3	5.61	26.6	89.0	24.59	63.4

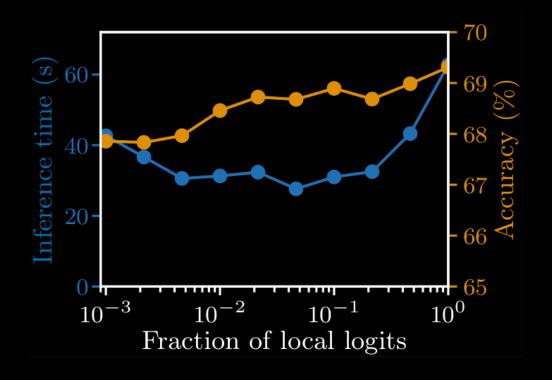
Performance on different datasets

	PubMed			Reddit			Mag-Scholar-C		
	Time (s)	Mem.	Acc.	Time (s)	Mem.	Acc.	Time (s)	Mem.	Acc.
Cluster-GCN	54.3	1.90	74.5	2310	21.04	17.1	>24h	-	_
SGC	5.3	2.17	75.7	7780	10.15	12.1	>24h	-	-
PPRGo ($\epsilon=10^{-4}, k=32$)	3.8	1.63	75.2	16.8	5.49	26.5	98.9	24.51	69.3
PPRGo ($\epsilon=10^{-2}$, $k=32$)	2.9	1.62	73.7	16.3	5.61	26.6	89.0	24.59	63.4

Trade speed for accuracy



Efficient inference



Utilizes distributed training significantly better

< 2 minutes runtime on a single machine for 12M nodes

Speed-up at no cost to accuracy

www.daml.in.tum.de/pprgo

🄰 @abojchevski, @klicperajo

