
April 30 – May 03, 2018
Vancouver, BC – Canada

Professorship of Data Mining and Analytics

Department of Informatics

Technical University of Munich

Deep Gaussian Embedding of Graphs:
Unsupervised Inductive Learning via Ranking 

Aleksandar Bojchevski, Stephan Günnemann

github.com/abojchevski/graph2gaussICLR 2018

Graph2Gauss - 3 key modeling ideas

1. Uncertainty: embedding nodes as Gaussian distributions captures uncertainty
2. Personalized ranking: for node 𝑖, nodes in 𝑘-hop neighborhood should be closer to 𝑖 than nodes in (𝑘 + 1)-hop neighborhood
3. Inductiveness: generalizes to unseen nodes by learning a mapping from node features to embeddings 
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Cora-ML 75.95 90.93 87.83

Cora 78.53 94.18 92.96

Citeseer 73.09 88.58 87.30

DBLP 67.55 85.06 83.09

Pubmed 86.83 92.22 90.20

 Uncertainty correlates with neighborhood diversity
▪ Diversity is number of distinct classes in a node’s k-hop neighborhood

 Uncertainty reveals the intrinsic latent dimensionality of the graph
▪ Detected latent dimensions ≈ number ground-truth communities 

 We can prune dimensions with high average uncertainty
▪ Without a decrease in link prediction performance 

Embedding uncertainty Inductiveness Visualization

 G2G is truly inductive
▪ After training only needs attributes
▪ Able to embed nodes w/o edges

 Maintains strong performance
▪ Even for ¼ of the nodes hidden

2D Embedding of Cora-ML

Embedding quality

 Graph2Gauss shows strong performance for both link prediction
and node classification tasks

 Strong performance even when using only the network structure

 Graph2Gauss is parameter and data efficient
▪ large performance gap for both small embedding size 
▪ and in the sparse training setting (e.g. 15% edges)

Efficient optimization

 Personalized ranking implies the following constraints:

 Learning via energy-based loss
▪ closer nodes should have lower energy
▪ naive optimization: 𝑂(𝑁3) complexity

 Node-anchored sampling strategy

▪ only few triplets seen (< 4.2%) to match performance
▪ lower gradient variance compared to uniform random sampling
▪ our optimization: 𝑂(𝑁) complexity

set of nodes in the 𝑘-hop neighborhood of node 𝑖naturally handles directed graphs
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