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GraphZ2Gauss - 3 key modeling ideas

1. Uncertainty 2. Personalized ranking 3. Inductiveness
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1. Uncertainty: embedding nodes as Gaussian distributions captures uncertainty
2. Personalized ranking: for node i, nodes in k-hop neighborhood should be closer to i than nodes in (k + 1)-hop neighborhood
3. Inductiveness: generalizes to unseen nodes by learning a mapping from node features to embeddings

Efficient optimization Embedding quality

4 G2G G2G_oh X TRIDNR ® TADW Vv GAE B node2vec Logistic Regression

[ Personalized ranking implies the following constraints:
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 Learning via energy-based loss 2 48 16 32 64 128
. 2 _Ei ./ Emebdding size L
" closer nodes should have lower energy L= Z(i,j,j’)(Eij texp ')
= naive optimization: O(N3) complexity J Graph2Gauss shows strong performance for both link prediction
Eij — DKL(NjHNi) cpe e
and node classification tasks

. Node-anchored sampling strategy

— [ Strong performance even when using only the network structure
| Sample Vi, (j{, ..., jg) ~ (Ni(l), ...,Ni(K)) and optimize over implied constraints :

J Graph2Gauss is parameter and data efficient
= only few triplets seen (< 4.2%) to match performance .

" |ower gradient variance compared to uniform random sampling
= our optimization: O(N) complexity

EFmbedding uncertainty

large performance gap for both small embedding size

"= and in the sparse training setting (e.g. 15% edges)

Inductiveness

Visualization
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. Uncertainty correlates with neighborhood diversity

= Even for 1 of the nodes hidden

L : L L. : , : Log. Reg. G2G G2G
Diversity is number of distinct classes in a node’s k-hop neighborhood Dataset 10% 10% 550
, L , , , Cora-ML 75.95 90.93 37.83
[ Uncertainty reveals the intrinsic latent dimensionality of the graph
: : . Cora 78.53 94.18 92.96
=  Detected latent dimensions = number ground-truth communities .
Citeseer 73.09 388.58 387.30 i
: : : : : DBLP 6/7.55 35.06 33.09
1 We can prune dimensions with high average uncertainty 5D Embedding of Cora-ML
=  Without a decrease in link prediction performance Pubmed | 86.83 92.22 90.20 5
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