
Experiment with Gaussian smoothing 
Evaluating	our	first	upper	bound	for	different	parameters,	we	
compare	our	result	with	SOTA	bounds.	
	
	
	
	
	
	
	
	
Evaluating	our	second	upper	bound	on	CIFAR10	dataset	with	
100	random	samples.		
	
	
	
	
	
	
	

Data	Analytics	and	Machine	Learning	Group	
Department	of	Informatics	
Technical	University	of	Munich	

Completing the Picture:  Randomized Smoothing Suffers from  
the Curse of Dimensionality for a Large Family of Distributions 

Yihan Wu, Aleksandar Bojchevski, Aleksei Kuvshinov, Stephan Günnemann 
www.daml.in.tum.de/curse/ 

TL;DR:	We	derived	two	upper	bounds	on	the	certified	
radius	with	randomized	smoothing	method	for	origin-
symmetric	distributions.	The	radius	scales	as	O(1/√d).	

Methods to find the upper bound 
Functional	optimization	method:		
Provide	a	tight	lower	bound	of																	.	
Optimization	problem:		
	
	
	
	
where				is	in	the	feasible	set	of	all	classifiers.	
	
The	certified	radius	is	the	largest	norm	of					such	that		
	
	
 
	

Randomized smoothing is important 
Randomized	smoothing	is	currently	the	only	SOTA	certificate	
that	scales	to	large	networks	and	different	settings.	
	
Smoothed	classifier:	given	a	base	classifier				and	a	sample	x	
with	label			,	the	smoothed	classifier				with	distribution				is	
 
	
Certified	radius:	the	largest				such	that	for	any	perturbation				
with	norm															,	the	prediction	of	perturbed	samples	does	
not	change.		
	
Certified	radius	in	randomized	smoothing:	We	calculate	a	
lower	bound	of	certified	radius	of	the	smoothed	classifier	by	
finding	a	lower	bound	of																	.		
 
	

Intuition:	we	can	find	an	upper	bound	of	certified	radius	by	
selecting	a	classifier				and	perturbation				such	that	
                          	and																												,	then	 
 
 
and	the	certified	radius	is	upper	bounded	by	the	norm	of				.	
	 
We	need	to	find	a	classifier	and	a	perturbation	that	simplify	
the	calculation. 
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Alternative bound for l2 
				:	a	hyperspherical	sector	of	a	d-dimensional	ball.	
The	classifier	we	defined	is																					and				is	orthogonal	to	
the	hyperplane.							is	a	sample	and	distribution	based	radius.	
2nd	upper	bound:	
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gh (x) = g f (x) gh (x +δ) < 0.5

g(x +δ) < gh (x +δ) < 0.5
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Bound the l2 radius 
					:	a	hyperspherical	sector	of	a	d-dimensional	ball.	
The	classifier	we	defined	is											and				is	orthogonal	to	the	
hyperplane.	
1st	upper	bound:	
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The	classifier	is	trained	with	noise	
augmentation 

Extension to lp bounds 
We	extend	our	l2	bounds	to	lp bounds	with	spherical	symmetric	
distributions.	
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Main Research Question	
What	is	the	best	result	we	can	hope	for	with	randomized	
smoothing?	
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