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ABSTRACT
Spectral clustering is one of the most prominent clustering ap-

proaches. However, it is highly sensitive to noisy input data. In this

work, we propose a robust spectral clustering technique able to han-

dle such scenarios. To achieve this goal, we propose a sparse and

latent decomposition of the similarity graph used in spectral cluster-

ing. In our model, we jointly learn the spectral embedding as well

as the corrupted data – thus, enhancing the clustering performance

overall. We propose algorithmic solutions to all three established

variants of spectral clustering, each showing linear complexity in

the number of edges. Our experimental analysis con�rms the sig-

ni�cant potential of our approach for robust spectral clustering.

Supplementary material is available at www.kdd.in.tum.de/RSC.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
Unsupervised learning; Spectral methods; •Information sys-
tems →Data mining; Clustering;

1 INTRODUCTION
Clustering is one of the fundamental data mining tasks. Among the

variety of methods that have been introduced in the literature [1],

spectral clustering [20] is one of the most prominent and successful

approaches. It has been successfully applied in many domains

ranging from computer vision to network analysis.

Since spectral clustering relies on a similarity graph only (e.g.

connecting each instance with its m nearest neighbors), it is ap-

plicable to almost any data type, with vector data being the most

frequent case. Spectral clustering embeds the data instances into a

vector space that is spanned by the k eigenvectors corresponding

to the k smallest eigenvalues of the graph’s (normalized) Laplacian

matrix. By clustering in this space, even complex structures can be

detected – such as the half-moon data shown in Fig. 1 (le�).

While spectral clustering is widely used in practice, one big issue

is rarely addressed: it is highly sensitive to noisy input data. Fig. 1

illustrates this e�ect. While for the data on the le� spectral cluster-

ing perfectly recovers the ground-truth clusters, the scenario on

the right – with only slightly perturbed data – leads to a completely
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Figure 1: Spectral clustering (SC) is sensitive to noisy input.
Le�: SC detects the clustering. Right: SC fails. Our method
(RSC) is successful in both scenarios.

wrong clustering for any of the three established versions [20] of

spectral clustering. Spectral clustering fails in such scenarios.

In this work, we introduce a principle to robustify spectral clus-

tering. �e core idea is that the observed similarity graph is not

perfect but corrupted by errors. �us, instead of operating on the

original graph – or performing some, o�en arbitrary, data cleaning

that precedes the analysis – we assume the graph to be decomposed

into two latent factors: the clean data and the corruptions. Follow-

ing the idea that corruptions are sparse, we jointly learn the latent

corruptions and the latent spectral embedding using the clean data.

For tasks such as regression [18], PCA [2], and autoregression

[6, 8], such ideas have shown to signi�cantly outperform non-robust

techniques. And, indeed, also our method – called RSC – leads to

clusterings that are more robust to corruptions. In Fig. 1 (right)
our approach is able to detect the correct clustering structure. More

precisely, our work is based on a sparse latent decomposition of

the graph with the aim to optimize the eigenspace of the graph’s
Laplacian. �is is in strong contrast to, e.g., robust PCA where the

decomposition is guided by the eigenspace of the data itself. In

particular, di�erent Laplacians a�ect the eigenspace di�erently and

require di�erent solutions.

We note that the focus of this work is not on �nding the number

of clusters automatically. Principles using, e.g., the largest eigen-

value gap [14] might similarly be applied to our work. We le� this

aspect for future work. Overall, our contributions are:

• Model: We introduce a model for robust spectral clustering

that handles noisy input data. Our principle is based on the idea

of sparse latent decompositions. �is is the �rst work exploiting

this principle for spectral clustering, in particular tackling also

the challenging case of normalized Laplacians.

• Algorithms: We provide algorithmic solutions for our model

for all three established versions of spectral clustering using

di�erent Laplacian matrices. For our solutions we relate to

principles such as Eigenvalue perturbation and the multidimen-

sional Knapsack problem. In each case, the complexity of the

overall method is linear in the number of edges.
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• Experiments: We conduct extensive experiments showing

the high potential of our method, with up to 15 percentage

points improvement in accuracy on real-world data compared

to standard spectral clustering. Moreover, we propose two novel

measures – local purity and global separation – which enable

us to evaluate the intrinsic quality of an embedding without

relying on a speci�c clustering technique.

2 PRELIMINARIES
We start with some basic de�nitions required in our work. Let A
be a matrix, we denote with ai the i-th row-vector of A and with

ai, j the value at position i, j. A similarity graph is represented

by a symmetric adjacency matrix A ∈ (R≥0)
n×n

, with n being

the number of instances. We denote the set of undirected edges as

E = {(i, j ) | ai, j > 0 ∧ i > j}. �e set of edges incident to node i is

given by Ei = {(x ,y) ∈ E | x = i ∨ y = i}. �e vector representing

the edges of A is wri�en as [ai, j ](i, j )∈E = [ae ]e ∈E .

We denote with di =
∑
j ai, j the degree of node i , and with

D (A) = diaд(d1, . . . ,dn ) the diagonal matrix representing all de-

grees. We denote with I the identity matrix, whose dimensionality

becomes clear from the context. Furthermore, as required for spec-

tral clustering, we introduce di�erent notions of Laplacian matrices:

- unnormalized Laplacian: L(A) = D (A) −A
- normalized Laplacians: Lrw (A) = D (A)−1L(A)

and Lsym (A) = D (A)−1/2L(A)D (A)−1/2

2.1 Spectral Clustering
Spectral clustering can be brie�y summarized in three steps (see

[20] for details). Step 1: Construct the similarity graph A. Di�erent

principles for the similarity graph construction exist. We focus on

the symmetric x-nearest-neighbor graph, as it is recommended by

[20] – any other construction can be used as well. �us, the graph

A is given by ai, j = 1 if i is a x nearest neighbor of j or vice versa,

and ai, j = 0 else.

Step 2: Depending on the considered Laplacian, the next step is

to compute the following eigenvectors
1
:

- L(A): k �rst eigenvectors of L(A)
- Lrw (A): k �rst generalized eigenv. of L(A)u = λD (A)u
- Lsym (A): k �rst eigenvectors of Lsym (A)
�is step stems from the fact that spectral clustering tries to obtain

solutions that minimize the ratio-cut/normalized-cut in the similar-

ity graph. As shown in [20], an approximation to, e.g., the ratio-cut

is obtained by the following trace minimization problem

min

H ∈Rn×k
Tr (HT L(A)H ) subject to HTH = I (1)

�e solution being the k �rst eigenvectors of the Laplacian L as

stated above. Similar trace minimization problems can be formu-

lated for the other Laplacians. We denote with H ∈ Rn×k the

matrix storing the eigenvectors as columns.

Step 3: Clustering onH . �e spectral embedding of each instance

i is given by the i-th row of H . To �nd the �nal clustering, the

vectors hi are (in case of Lsym �rst normalized and then) clustered

using, e.g., k-means.

1
We denote with ’k �rst’ eigenvectors, those k eigenvectors refering to the k smallest

eigenvalues.

3 RELATEDWORK
Multiple principles to improve spectral clustering have been intro-

duced – focusing on di�erent kinds of robustness. Surprisingly,

many of the techniques [9, 11, 14, 23] are based on fully connected

similarity graphs – even though nearest neighbor graphs are recom-

mended [20]. First, using fully connected graphs highly increases

the runtime – the considered matrices are no longer sparse – and,

second, one has to select an appropriate scaling factor σ , required,

e.g., for the Gaussian Kernel when constructing the graph (see [20]).

�us, many techniques [9, 11, 14, 23] focus on robustness regarding

the parameter σ .

Local similarity scaling: [23] introduces a principle where the

similarity is locally scaled per instance, i.e. the parameter σ changes

per instance. By doing so, an improved similarity graph is obtained

that be�er separates dense and sparse areas in the dataspace. �e

work [11] has extended this principle by using a weighted local

scaling. �e methods work well on noise-free data; however, they

are still sensitive to noisy inputs.

Laplacian smoothing: [9] considers the problem of noisy data

similar to our work, and they propose a principle of eigenvector

smoothing. �e initial Laplacian matrix is replaced by a smoothed

version M =
∑n
i=2

1

γ+λi
xi · xTi where xi and λi are the eigenvec-

tors/values of the original Laplacian matrix. Clustering is then

performed on the eigenvectors of the matrix M . A signi�cant draw-

back is that a full eigenvalue decomposition is required.

Data warping: [14] focuses on data where uniform noise has been

added; not noisy data itself. �ey propose the principle of data warp-

ing. Intuitively, the data is transformed to a new space where noise

points form its own cluster. Since they focus on fully connected

graphs, noise can easily be detected by inspecting points with the

lowest overall similarity. Since [9] and [14] are the most closely
related works to our principle, we compare against them in
our experiments.

Feature weighting: Focusing on a di�erent scenario, multiple

works have considered noisy/irrelevant features. In [10] a global

feature weighting is learned in a semi-supervised fashion, thus,

leading to an improved similarity matrix. [24] learns an a�nity

matrix based on random subspaces focusing on discriminative fea-

tures. In [7], inspired by the idea of subspace clustering, feature

weights are learned locally per cluster.

All the above techniques (except [7]) follow a two-step, sequen-
tial approach: �ey �rst construct an improved similarity graph/

Laplacian and then apply standard spectral clustering. In contrast,

our method jointly learns the similarity graph and the spectral

embedding. Both steps repeatedly bene�t from each other.

Besides the above works focusing on general spectral cluster-

ing, di�erent extended formulations have been introduced: [13]

considers hypergraphs to improve robustness, [3] uses path-based

characteristics. None of the techniques jointly learns a similarity

matrix and the spectral embedding. Not focusing on robustness

w.r.t. noise, [21] computes a doubly stochastic matrix by imposing

low-rank constraints on the graph’s Laplacian. It is restricted to the

unnormalized Laplacian and leads to dense graphs, making it im-

practical for large data. Moreover, works such as [15] consider the

problem of �nding anomalous subgraphs using spectral principles,

again not focusing on the case of noise.
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We further note that the spectral analysis is not restrictred to a

graph’s Laplacian (as used in standard spectral clustering). �e clas-

sical works of Davis-Kahan [5], for example, study the perturbation

of a matrix X and the change of X ’s eigenspace. Following this line,

[22] studies clustering based on the eigenspace of the adjacency

matrix itself. In contrast, in this paper, we focus on the change of

the eigenspace of L(X ). In particular, we also consider the case of

normalized Laplacians, which o�en lead to be�er results [20].
2

4 ROBUST SPECTRAL CLUSTERING
In the following, we introduce the major principle of our technique

– called RSC. For illustration purposes, we will start with spectral

clustering based on the unnormalized Laplacian. �e (more com-

plex) principles for normalized Laplacians are described in Sec. 5

Let A ∈ (R≥0)
n×n

be the symmetric similarity graph extracted

for the given data, with n being the number of instances in our

data (see Sec. 2). Our major idea is that the similarity graph A is not
perfect but might be corrupted (e.g. due to noisy input data). Any
analysis performed on A might lead to misleading results.

�erefore, we assume that the observed graph A is obtained

by two latent factors: Ac
representing the corruptions and Aд

representing the ’good’ (clean) graph. More formally, we assume

an additive decomposition
3
, i.e.

A = Aд +Ac
with Aд ,Ac ∈ (R≥0)

n×n
, both symmetric.

Instead of performing the spectral clustering on the corrupted

A, our goal is to perform it on Aд . �e core question is, how to
�nd the matrices Aд and Ac ? In particular since clustering is an

unsupervised learning task we don’t know which entries inAmight

be wrong. For solving this challenge, we exploit two core ideas:

1) Corruptions are relatively rare – if they were not rare, i.e. the

majority of the data is corrupted, a reasonable clustering structure

can not be expected. Technically, we assume the matrix Ac
to be

sparse.

Let θ denote the maximal number of corruptions a user expects

in the data. We require ‖Ac ‖
0
≤ 2 · θ where



Ac 

0
:= |{(i, j ) | aci, j , 0}|

denotes the element-wise L0 pseudo-norm (2 · θ due to symmetry

of the graph).

While θ constrains the number of corruptions globally, it is like-

wise bene�cial to enforce sparsity locally per node. �is can be

realized by the constraint



a
д
i




0

≥ m for each node i (or equiva-

lently:



a

c
i




0

≤ |Ei | −m; we chose the �rst version due to easier

interpretability: each node in Aд will be connected to at least m
other nodes). Note that θ and m control di�erent e�ects. To ignore

either global or local sparsity, one can simply set the parameter to

its extreme value (θ = 1

2
‖A‖

0
orm = 1).

2) �e detection ofAд /Ac
is steered by the clustering process, i.e.,

we jointly perform the spectral clustering and the decomposition of

A. �is is in contrast to a sequential process where �rst the matrix

is constructed and then the clustering is performed.

2
Surprisingly, many advanced spectral works still consider only the easier case of

unnormalized Laplacians. Our competitors [9, 14] handle normalized Laplacians.

3
�is general decomposition not only leads to good performance, as we will see later,

but also facilitates easy interpretation.

SC RSC θ = 10 RSC θ = 20

Figure 2: Spectral embeddings for data of Fig. 1 (right). Le�:
Spectral clustering; middle: RSC with θ = 10, right: θ = 20.
RSC enhances the discrimination of points.

�e strong advantage of a simultaneous detection is that we

don’t need to specify a separate – o�en arbitrary – objective for

�nding Aд , but the process is complete determined by the underly-

ing spectral clustering. More precise, we exploit the equivalence

of spectral clustering to trace minimization problems (see Sec. 2.1,

Eq. (1)). Intuitively, the value of the trace in Eq. (1) corresponds

to an approximation of the ratio-cut in the graph A. �e smaller

the value, the be�er the clustering. �us, we aim to �nd the matrix

Aд by minimizing the trace based on the Laplacian’s eigenspace –

subject to the sparsity constraints. Overall, our problem becomes:

Problem 1. Given the matrix A, the number of clusters k , the
sparsity threshold θ , and the minimal number of nearest neighborsm
per node. Find H∗ ∈ Rn×k and Aд∗ ∈ (R≥0)

n×n such that
(H∗,Aд∗) = arдmin

H ,Aд
Tr(HT · L(Aд ) ·H ) (2)

subject to HT ·H = I and Aд = AдT and
‖A −Aд ‖

0
≤ 2 · θ and 


a

д
i




0

≥ m ∀i ∈ {1, . . . ,n}

�e crucial di�erence between Eq. (1) and Problem 1 is that we

now jointly optimize the spectral embedding H and the similarity

graph Aд . �e Laplacian matrix L(Aд ) is no longer constant but

adaptive.

Figure 2 shows the strong advantage of this joint learning. Here,

di�erent spectral embeddings H (2nd and 3rd eigenvector since

the 1st is constant) for the data in Fig. 1 (right) are shown. �e le�

plot shows the embedding using usual spectral clustering. Due to

the noisy input, the three groups are very close to each other and

each spread out. Clustering on this embedding merges multiple

groups and, thus, leads to low quality (for real-world data these

embeddings look even harder as we will see in the experimental

section). In contrast, the middle and right images show the spectral

embedding learned by our technique when removing just 10 or 20

corrupted edges, respectively. Evidently, the learned embeddings

highlight the clustering structure more clearly. �us, by simultane-

ously learning the embedding and the corruptions, we improve the

clustering quality.

4.1 Algorithmic Solution
While our general objective is hard to optimize (in particular due to

the ‖.‖
0

constraints the problem becomes NP-hard in general), we

propose a highly e�cient block coordinate-descent (alternating) op-

timization scheme to approximate it. �at is, given H , we optimize

for Aд/Ac
; and given Aд/Ac

we optimize for H (cf. Algorithm 1).

Of course, since Ac
determines Aд and vice versa, it is su�cient

to focus on the update of one, e.g., Ac
. It is worth pointing out
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that in many works, the ‖.‖
0

norm is simply handled by relaxation

to the ‖.‖
1

norm. In our work, in contrast, we aim to preserve the
interpretability of the ‖.‖

0
norm; for this, we derive a connection

to the multidimensional Knapsack problem.

Update of H : Given Ac
, the update of H is straightfarward.

Since Aд = A −Ac
and therefore L(Aд ) are now constant, we can

simply refer to Eq. (2): �nding H is a standard trace minimization

problem. �e solution of H are the k �rst eigenvectors of L(Aд ).
Update of Ac : Clearly, since Ac

needs to be non-negative, for

all elements (i, j ) with ai, j = 0, it also holds aci, j = 0. �us, in the

following, we only have to focus on the elements aci, j with (i, j ) ∈ E,

i.e. the vector [ace ]e ∈E . We base our update on the following lemma:

Lemma 4.1. Given H , the solution for Ac minimizing Eq. (2) can
be obtained by maximizing

f1 ([a
c
e ]e ∈E ) :=

∑
(i, j )∈E

aci, j ·



hi − hj





2

2

(3)

subject to the ‖.‖
0
constraints and for each e : ace ∈ {0,ae }.

Proof. See appendix. �

Exploiting Lemma 4.1, our problem can equivalently be treated

as a set selection problem. For this, letX ⊆ E and [vXe ]e ∈E = v
X ∈

R |E | be the vector with vXe =



ai, j if (i, j ) = e ∈ X

0 else

, our goal is

to �nd a set X∗ ⊆ E maximizing f1 (v
X∗ ) subject to the constraints.

Accordingly, Problem 1 can be represented as (a special case of) a

multidimensional Knapsack problem [16] operating on the set of

edges E:

Corollary 4.2. Given H . Let X = {e ∈ E | xe = 1} be the
solution of the following multidimensional Knapsack problem: Find
xe ∈ {0, 1}, e ∈ E such that

∑
e ∈E xe · pe is maximized subject to∑

e ∈E xe ≤ θ and ∀i = 1, . . . ,n :

∑
e ∈Ei xe ≤ |Ei | −m where

pe = p(i, j ) = ai, j ·



hi − hj





2

2

(4)

�e solution for Ac w.r.t. Eq. (2) corresponds tovX .

�is result matches the intuition of corrupted edges: �e term pe
is high for instances whose embeddings are very dissimilar (i.e. they

should not belong to the same cluster) but which are still connected

by an edge.

While �nding the optimal solution of a multidim. Knapsack

problem is intractable, multiple e�cient and e�ective approximate

solutions exist [12, 16]. We exploit these approaches for our �nal

algorithm. Following the principle of [12], we �rst sort the edges

e ∈ E based on their ratio pe/
√
se . Here, se is the number of

constraints the variable xe participates in. Since in our special

case, each xe participates in exactly three constraints, se = 3, it is

su�cient to sort the edges based on the value pe . We then construct

a solution by adding one edge a�er another to Ac
as long as the

constraints are not violated. �is approach leads to the best possible

worst-case bound of 1/
√
n + 1 [12].

Algorithm 1 (lines 5-15) shows the update of Ac
/Aд . Note that

we do not need to sort the full edge set. It is su�cient to iteratively

obtain the best edges. �us, a priority queue PQ (e.g. a heap) is

used (line 7, 10). �e local ‖.‖
0

constraints can simply be ensured

by recording how many edges per node can still be removed (line

input :Similarity graph A, parameters k, θ,m
output :Clustering C1, . . . , Ck

1 Aд ← A;

2 while true do
/* Update of H */

3 Compute Laplacian, matrix H , and trace;

4 if Trace could not be lowered then break;

/* Update of Ac/Aд */
5 X = ∅ ;

6 for each node i set counti ← |Ei | −m;

7 priority queue PQ on tuples (score, edдe ) ;

8 for each edge e ∈ E add tuple (pe, e ) to PQ if pe > 0

[Eq. (4) or Eq. (6)];

9 while PQ not empty do
10 get �rst element from PQ→ (., ebest = (i, j )) ;

11 if counti > 0 ∧ countj > 0 then
12 X ← X ∪ {ebest };
13 counti − −; countj − −;

14 if |X | = θ then break;

15 construct Ac
according to vX ; Aд = A −Ac

;

16 apply k-means on (normalized) vectors (hi )i=1, . . .,n

Algorithm 1: Robust spectral clustering

6, 13). �us, an edge can only be included in the result (line 12) if

the incident nodes allow to do so (line 11).

�e overall method for robust spectral clustering using unnor-

malized Laplacians iterates between the two update steps (lines

3-15). Note that in each iteration, line 8 considers all edges of the

original graph. �us, an edge marked as corrupted in a previous

iteration might be evaluated as non-corrupted later. �e algorithm

terminates when the trace can not been improved further. In the

last step (line 16), the k-means clustering on the improved H matrix

is performed as usual.

Complexity: Using a heap, the update of Ac
can be computed in

time O ( |E |+θ ′ · log |E |), where θ ′ ≤ |E| is the number of iterations

of the inner while loop. Using power iteration, the eigenvectors

H can be computed in time linear in the number of edges. �us,

overall, linear runtime can be achieved, as also veri�ed empirically.

Sparse operations: It is worth mentioning that all operations per-

formed in the algorithm operate on sparse data. �is includes the

computation of the Laplacian, its eigenvectors, and the construc-

tions of Ac
and Aд . �us, even large datasets can easily be handled.

5 RSC: NORMALIZED LAPLACIANS
We now tackle the more complex cases of the two normalized

Laplacians, which o�en lead to be�er clustering. For this, di�erent

algorithmic solutions are required.

5.1 RandomWalk Laplacian
Spectral clustering based onLrw corresponds to a generalized eigen-

vector problem using L [20]. Our problem de�nition becomes:

Problem 2. Identical to Problem 1 but replacing the constraint
HT ·H = I with HT · D (Aд ) ·H = I .

Again, our goal is to solve this problem via block-coordinate

descent. While the update of H is clear (corresponding to the

�rst k generalized eigenvectors w.r.t. L(Aд ) and D (Aд )), using the

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

740



same approach for Ac
/Aд as introduced in Sec. 4.1 turns out to

be impractical: Since the constraint HT · D (Aд ) ·H = I now also

depends on Aд , we get a highly restrictive constrained problem. As

a solution, we propose a principle exploiting the idea of eigenvalue

perturbation [19].

Using eigenvalue perturbation, we derive a matrix Aд aiming

to minimize the sum of the k smallest generalized eigenvalues.

Minimizing this sum is equivalent to minimizing the trace based

on the normalized Laplacian’s eigenspace. We obtain:

Lemma 5.1. Given the eigenvector matrixH and the corresponding
eigenvalues λ = (λ1, . . . , λk ). An approximation of Ac minimizing
the objective of Problem 2 can be obtained by maximizing

f2 ([ace ]e∈E ) =
∑

(i, j )∈E

aci, j
(


hi − hj





2

2

−




√
λ ◦ hi





2

2

−




√
λ ◦ hj





2

2

)
(5)

subject to the ‖.‖
0
constraints and for each e : ace ∈ {0,ae }.

Here, √. denotes the element-wise square-root of the vector ele-
ments, and ◦ the Hadamard product.

Proof. See appendix. �

Clearly, the solution of the unnormalized case (Eq. (3)) and

the normalized case (Eq. (5)) are structural very similar – and for

solving it we can use the same principle as before (Algorithm 1),

simply using as edge scores now the values

pe = p(i, j ) = ai, j
(


hi − hj





2

2

−




√
λ ◦ hi





2

2

−




√
λ ◦ hj





2

2

)
(6)

Accordingly, also the complexity for �ndingAc
remains unchanged.

Note that only edges with positive score need to be added to the

queue (line 8).

Advantages: Comparing Eq. (6) with Eq. (4) one sees an additional

’penalty’ term which takes the norm/length of the vectorshi andhj
into account. �ereby, instances whose embeddings are far away

from the origin get a lower (or even negative) score. �is aspect
is highly bene�cial for spectral clustering: e.g., in the case of two

clusters, the �nal clustering can be obtained by inspecting the sign

of the 1d-embedding [20] – in general, intuitively speaking, clusters

are separated by the origin (see Fig. 2 where the origin is in the

center of the plots). Instances that are far away from the origin can be
clearly assigned to their cluster ; thus, marking their edges as corrupt

might improve the clustering only slightly. In contrast, edges that

are at the border between di�erent clusters are the challenging

ones – and exactly these are the ones preferred by Eq. (6).

5.2 Symmetric Laplacian
We now turn to the last case, spectral clustering using Lsym .

Problem 3. Identical to Problem 1 but replacing Eq. (2) with

(H∗,Aд∗) = arдmin
H ,Aд

Tr(HT · Lsym (Aд ) ·H ) (7)

Using alternating optimization, the matrix H can easily be up-

dated whenAд is given. For updating the matrixAд (or equivalently

Ac
) we use the following result:

Lemma 5.2. Given the eigenvector matrix H . �e matrix Ac mini-
mizing Eq. (7) can be obtained by maximizing

f3 ([a
c
e ]e ∈E ) :=

∑
(i, j )∈E

ai, j − a
c
i, j√

di − d
c
i ·

√
dj − d

c
j

· hi · h
T
j

subject to the ‖.‖
0
constraints and 0 ≤ ace ≤ ae , where dci =∑

e ∈Ei a
c
e .

Proof. Similar to proof of Lemma 4.1; see appendix �

What is the crucial di�erence between Lemma 5.2 and Lem-

ma 4.1/5.1? For the previous solutions, the objective function has

decomposed in independent terms. �at is, when adding an edge to

Ac
, i.e. changing aci, j from 0 to ai, j , the scores of the other edges are

not a�ected. In Lemma 5.2, the sum in f3 does not decompose into

independent terms. In particular, the terms dci in the denominator

lead to a coupling of multiple edges.

While, in principle, f3 can be optimized via projected gradient

ascent, each gradient step would require to iterate through all edges.

�erefore, as an alternative, we propose a more e�cient greedy

approximation: Similar to before, we focus on the solutions vX .

Starting with X = ∅, we iteratively let this set grow following

a steepest ascent strategy. �at is, we add the edge ebest to X

ful�lling

ebest = arg max

e ∈E′
f3 (v

X∪{e } ) (8)

where E ′ indicates the edges that could be added to X without

violating the constraints. Naively computing Equation (8) requires

|E ′ | · |E | many steps – and since we perform multiple iterations

to let X grow, it results in a runtime complexity of O (θ · |E |2);
obviously not practical. In the following, we show how to compute

this result more e�ciently.

De�nition 5.3. Let X ⊆ E, dXi := di −
∑
e ∈Ei∩X ae , and pi, j :=

ai, j · hi · hTj . We de�ne

s (i, w, X) :=
∑
j

(i, j )∈Ei \X
∨(j,i )∈Ei \X

*
,

1√
dXi −w

√
dXj

−
1√

dXi
√
dXj

+
-
pi, j

for each node i , and

δ (e, X) := *
,

1√
dXi

√
dXj

−
1√

dXi − ae
√
dXj

−
1√

dXi
√
dXj − ae

+
-
pi, j

for each edge e = (i, j ), and

∆(e,X) := s (i,ae ,X) + s (j,ae ,X) + δ (e,X)

Corollary 5.4. Given X and E ′ ⊆ E\X. It holds

arg max

e ∈E′
f3 (v

X∪{e } ) = arg max

e ∈E′
∆(e,X)

Proof. See appendix. �

By exploiting Corollary 5.4, we can �nd the best edge according

to Eq. (8), by only considering the terms ∆(e,X). �is term can be

interpreted as the gain in f3 when adding the edge e to the set X.

A�er computing the scores s (i,w,X) for each node, ∆(e,X) can be

evaluated in constant time per edge.
Moreover, let e = (i, j ), for each non-incident edge (i ′, j ′) = e ′ ∈

E\(Ei ∪ Ej ) it obviously holds s (i ′,w,X) = s (i ′,w,X ∪ {e}) and

δ (e ′,X) = δ (e ′,X ∪ {e}). �us, assume the edge ebest = (i, j ) has

been identi�ed and added to X. For �nding the next best edge,

only the scores s (i, ., .) and s (j, ., .) need to be updated; followed by

an evaluation of δ for all edges incident to the nodes i and j. �e
remaining nodes and edges are not a�ected; their s , δ , and ∆ values
are unchanged.
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Figure 3: Spectral embedding of banknote data based on Lsym . Note that the dataset contains two clusters. Le�: Standard
spectral clustering; middle & right: Our method (θ = 10 and 20). �e learned embeddings increase the discrimination between
the points. �e two clusters stand out more clearly.

Exploiting these results, we compute the set X similar to Algo-

rithm 1 (lines 5 - 15): Initially, compute for each node i and unique

edge weight ai, j the term s (i,ai, j ,X). �en compute for each edge

e the term (∆(e,X), e ) and add it to the priority queue PQ. �ese

steps can be done in time O (γ · |E |), where γ is the number of

unique edge weights per node. Within the while loop: Every time

the best element ebest = (i, j ) from the PQ is retrieved, we recom-

pute s (i, .,X) and s (j, .,X), followed by a recomputation of δ (e,X)
for all incident edges. Noticing that there are at most 2 · x many

incident edges (x nearest-neighbor graph) these steps can be done

in time O (γ · x + x · loд( |E |)).
Overall, this leads to a time complexity of O (γ · |E | + θ · (x ·

loд( |E |) + γ · x )). Note that the worst case (each edge has a unique

weight) corresponds to γ = x . In this case we obtain O (x · |E | +
θ · (x · loд( |E |) + x2)). For our case of spectral clustering using

nearest-neighbor graphs, however, it holds γ = 1. In this case, we

obtain an algorithm with complexity

O ( |E | + θ · x · loд( |E |))

�us, being linear in the number of edges.

In summary, the principle for solving Eq. (7) is almost identical

to Algorithm 1 with the additional overhead of re-evaluating the

term ∆(e,X) for the edges incident to ebest . �e full pseudocode

of this algorithm and the detailed complexity analysis are provided

in the supplementary material for convenience.

6 EXPERIMENTS
Setup. We compare our method, called RSC, against spectral clus-

tering (SC), and the two related works AHK [9] and NRSC [14]. We

denote with RSC-Lxy the di�erent variants of our method using

the corresponding Laplacian. For all techniques, we set the number

of clusters k equal to the number of clusters in the data. As default

values we construct nearest neighbor graphs with 15 neighbors, al-

lowing half of the edges to be removed per node (m = 0.5 ·x ). While

[14] uses a principle for automatically se�ing their parameters, the

obtained results were o�en extremely low. �us, we manually opti-

mized their parameters to obtain be�er solutions. All experiments

are averaged over several k-means runs to ensure stability. All used

datasets are publicly available/on our website. Real world data: We

use handwri�en digits (pendigits; 7494 instances; 16 a�ributes; 10

clusters)
4
, banknote authentication data (1372 inst.; 5 a�.; 2 clus.)

4
,

iris (150 inst.; 4 a�.; 3 clus.)
4
, and USPS data (9298 inst.; 256 a�.;

4
h�ps://archive.ics.uci.edu/ml/

10 clus.)
5
. Further, we use two random subsamples of the MNIST

data (10k/20k inst., 784 a�., 10 clus.) because our competitors can

not handle larger samples due to their cubic complexity. Synthetic

data: Besides the well known moon data as shown in Fig. 1, where

the vectors’ positions are perturbed based on Gaussian noise using

di�erent variance, we also generate synthetic similarity graphs

based on the planted partitions model [4]: Given the clusters, we

randomly connect each node to x percent of the other nodes in

its cluster. Additionally, we add a certain fraction of noise edges

to the graph. By default we generate data with 1000 instances,

x = 0.3 and 20 clusters. We evaluate the clustering quality of
the di�erent approaches using NMI (1=best). We start with an

in-depth analysis of our technique followed by a comparison with

competing techniques.

Spectral embedding. RSC optimizes the spectral embedding

H by learning the matrix Aд . �us, we start by analyzing the

spectral embeddings obtained by RSC. In Fig. 2 we illustrated the

spectral embeddings for the data of Fig. 1 (right). Standard spectral

clustering fails on this data, since the embedding (le� plot in Fig. 2)

leads to unclear groupings. In contrast, applying our technique, we

obtain the embeddings as shown in Fig. 2 (right): the three clusters

stand out; thus, perfect clustering structure can be obtained.

A similar behavior can be observed for real world data. Fig. 3

shows the spectral embedding of the banknote data (two clusters)

regarding Lsym (the other Laplacians show similar results). On the

le� we see the original embedding: �e points do not show a clear

separation in two groups. In the middle and right plot, we applied

RSC with θ=10 and θ=20, respectively. As shown, the separation

between the points clearly increases. �e embedding gets optimized

leading to higher clustering accuracy. As we will see later, for the

banknote data, the NMI score increases from 0.46 to 0.61.

Sparsity threshold. As indicated in Fig. 3, increasing the spar-

sity threshold might lead to a clearer separation. We now analyze

this aspect in more detail. Figure 4 (le�) analyzes a two-moons

datasets with noise of 0.1. We vary θ for all three techniques. θ = 0

corresponds to original spectral clustering using the corresponding

Laplacian; clearly, its quality is low. As shown, for all techniques

we observe an increase in the clustering quality until a stable point

is reached. Fig. 4 (right) shows the same behavior for the ban-

knote data. �e removal of corrupted edges improves the clustering

results. All three variants are able to reach the highest NMI of 0.61.

5
h�p://www.cs.nyu.edu/∼roweis/data.html
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Figure 4: Increasing the sparsity threshold θ improves the
clustering quality. Le�: two moons data; right: banknote.

Remark: Using the variant based on L, at some point, the qual-

ity will surely drop again. When all corrupted edges have been

removed, one will start to remove ’good’ edges. �e reason is that

the terms in Eq. (3) are always non-negative. In contrast, using

Lrw /Lsym (Eq. (3); Cor. 5.4, ∆), edges connecting points within the

same cluster will o�en obtain negative scores. �ose edges will

never be included in the matrix Ac
– independent of θ . �us, in

general, the later two versions are more robust regarding θ .

According to our de�nitions we aim to minimize the trace. In

Fig. 5 we illustrate the value of the trace for the se�ing of Fig. 4

(right). Since the trace between the di�erent Laplacian can not be

meaningfully compared in absolute values, we plot it relative to

the trace obtained by standard spectral clustering. For all of our

approaches the trace can successfully be lowered by a signi�cant

amount; thus, con�rming the e�ectiveness of our learning approach.

Note also that our algorithms o�en need only around 10 iterations

to converge to these good results.

Detection of corrupted edges. Next, we analyze how well our

principles are able to spot corrupted edges. For this, we arti�cially

added corrupted edges to the similarity graph based on the planted

partition model. We used two di�erent se�ings: in one case 10%

of all edges in the graph are corrupted; in the other even 20% of

all edges. Knowing the corrupted edges, we measure the precision

p = |B ∩ A|/|B | and recall r = |B ∩ A|/|A|, where A denotes the

corrupted edges, and B the edges removed by our technique.

Fig. 6 shows the results when increasing the number of removed

edges (i.e. θ ). For the 10% noise case (le� plot), we observe a very

high precision which stays at the optimal value until 1200 – only

the corrupted edges are removed. Note that the absolute number

of corrupted edges in the data is 1261. Likewise, the recall is con-

tinuously increasing until around 0.96. �us only a few corrupted

edges could not be detected. �e scenario with 20% noise (3605

corrupted edges) is more challenging. While Lsym obtains a result

very close to optimal, Lrw and L perform slightly worse. �us, for

these techniques also some ’good’ edges get removed. Note that the

curves do not need to be monotonic. Due to the joint optimization,

di�erent edges can be removed for each parameter se�ing.

Overall, for realistic scenarios of noise, all techniques perform

well – with Lsym o�en being the best one.

Robustness. In the next experiment, we analyze the robustness

of our method regarding perturbed data. �at is, we study how

an increasing degree of noisy data e�ects the clustering quality.

We refer to the established moon data and perturb it randomly

according to Gaussian noise with variance increased from 0 to 0.115.

To highlight the variation in the clustering quality we average the

results over 10 datasets for each noise parameter.

Fig. 7 shows the results of our principles and standard spectral

clustering. �e lines represents the mean NMI, while the error bars

represent the variance. Note that for standard SC we report the

best result among all three Laplacian (for each dataset individually).

�us, standard spectral clustering gets an additional strong bene�t.
Clearly, spectral clustering is not robust and rapidly decreases in

quality. Interestingly, for the moon data, L performs best. In any

case, all of our approaches clearly outperform the baseline.

Comparison of Runtime. We now turn our a�ention to the

comparison between RSC and related techniques. First, we brie�y

evaluate the runtime behaviour. �e experiments were conducted

on 2.9 GHz Intel Core i5 with 8GB of RAM running Matlab R2015a.

Fig. 8 shows the overall runtime for each method on pendigits. To

obtain larger data, we performed supersampling; adding small noise

(variance of 0.1) to avoid duplicates. Con�rming our complexity

analysis, RSC scales linear in the number of edges – and it easily

handles graphs with around 1 mio edges. Not surprisingly, standard

spectral clustering is the fastest. �e competing techniques are

much slower due to their cubic complexity in the number of nodes;

they can only handle small graphs. For the larger datasets, they did

not �nish within 24 hours.

Comparison of clustering quality. Next, we provide an over-

view of the clustering quality. For all techniques we used the sym-

metric normalized Laplacian since it performed best. Even though

our main aim is to improve spectral clustering approaches, we ad-

ditionally report the results of two famous clustering principles:

(A) k-means and (B) density-based clustering (here: mean shi�).

For the later, we tuned the bandwidth parameter to obtain highest

scores. As already mentioned in the set-up, the competing tech-

niques’ parameters were tuned as well. For RSC, we simply used
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Figure 5: Our method obtains better
(lower) trace values (trace of SC=100%)
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Figure 7: Robustness to noise. Our RSC
clearly outperforms spectral clustering.

Figure 8: Runtime analysis. RSC scales
linear in the number of edges

Figure 9: Robustness of all techniques
on banknote. RSC is very stable.

a very large θ and let the method automatically decide how many

edges to mark as corrupted – one advantage of Lsym (see remark in

experiment on sparsity threshold). Table 1 summarizes the results

for the di�erent datasets.

data SC NRSC AHK (A) (B) RSC

moons 0.47 0.99 0.53 0.19 0.34 1.00
banknote 0.46 0.47 0.52 0.03 0.03 0.61

USPS 0.78 0.83 0.77 0.61 0.15 0.85
MNIST-10 K 0.71 0.70 0.70 0.48 0.48 0.73
MNIST-20 K 0.70 0.76 0.71 0.48 d.n.f. 0.78

iris 0.78 0.79 0.53 0.76 0.72 0.80
pendigits 0.82 0.83 0.82 0.69 0.66 0.82

pendigits-16 0.86 0.87 0.88 0.88 0.01 0.91
pendigits-146 0.93 0.94 0.94 0.88 0.47 0.96

Table 1: Clustering quality

Besides using

the full datasets,

we use the prin-

ciple of [9, 14]

and additionally

select sets of the

data. More pre-

cisely, from the

pendigits data we

select speci�c dig-

its indicated with pendigits-xyz.

As shown, in many cases our technique outperforms the com-

peting techniques. In some scenarios by even 15 percentage points

w.r.t. spectral clustering. �ough, it is also fair to mention that

not for all datasets an improvement can be achieved. Our method

clearly outperforms k-means and density based clustering and it

�nishes for all these datasets in a few seconds to minutes. In con-

trast, NRSC and AHK required already around one and three hours

respectively on the larger MNIST data.

Comparison of robustness. Next, we analyze the robustness

of the methods by arti�cially adding noise to the real data. To

ensure that the cluster detection is indeed ge�ing more di�cult,

we speci�cally add corruptions to the similarity graph connecting

di�erent clusters. �e results for the banknote data are presented

in Fig. 9. As shown, at the beginning all techniques remain at their

quality level obtained on the original data, with RSC obtaining

the highest quality. Adding more corruptions, however, standard

spectral clustering drops very quickly and sharply to low quality.

In contrast, RSC stays at its highest level for the longest time. AHK

is quite stable as well, while NRSC is much more sensitive.

Comparison of the embeddings’ quality. One of our main

hypothesis is that jointly learning the embedding and the corrup-

tions leads to improved embeddings. �us, lastly, we study the

quality of the embeddings learned by all techniques. While we have

already seen in Table 1, that the NMI scores of RSC are good, such

measures give only limited insights how the underlying embedding

space looks like. How can we measure the quality of the embeddings?
In particular, we aim to derive statistics that do not depend on

applying a clustering technique on the data – instead we want to

evaluate the embedding based on the ground truth classes
6

only.

We argue that two properties should be ful�lled: (a) Local purity.

In a good embedding, the instances within a local neighborhood

should belong to the same class. (b) Global separation: In a good

embedding, it should be possible to distinguish between instances

of di�erent classes by inspecting the intra-class and inter-class

distances only. �at is, the classes should be easily separable.

Evaluation of Local Purity. Let hi denote the embedding of

instance i and ci ∈ C its class according to the ground truth. We

de�ne the purity purx (i ) of the neighborhood around instance i
(x-nearest neighbors) as the largest fraction of instances belonging

to the same class. Formally: Let NNx (i ) denote the set of x nearest

neighbors of i in the embedding space and occx (c, i ) the number of

times the class c occurs in the neighborhood of node i (including

the node itself), i.e. occx (c, i ) = |{j ∈ NNx (i ) ∪ {i} | c j = c}|. �en

the purity is given by

purx (i ) =
1

x + 1

max

c ∈C
occx (c, i )

�e overall local purity (at scale x) is de�ned as the average over

all instances:

PUR (x ) =
1

N

N∑
i=1

purx (i )

In the best case PUR (x ) = 1, each neighborhood contains instances

of a single class only; in the worst case 1/k where k = |C | is the

number of classes. As an example, imagine an embedding that looks

like Figure 1: We would observe good purity (PUR (x )=1) for small

x . Slightly increasing x , the purity decreases since di�erent classes

get merged, demonstrating the low quality of such an embedding.

Results: Fig. 10 shows the result for banknote and USPS for all

competing techniques. x is scaled from 1 to the maximal cluster size

to ensure that all scales are captured. As a baseline we also evaluate

the purity of the original input data (i.e. the embedding space is the

raw data). As seen, in both plots, the original data only has good

purity for small x , but drops quickly. �is indicates complex shapes

like in Fig. 1. For banknote, RSC has consistently the highest local

purity. �e embedding well re�ects the ground truth locally. SC

and AHK perform slightly worse. NRSC, in contrast, drops very

quickly similar to the baseline. For USPS, all techniques clearly

outperform the baseline. While for small x RSC is slightly below

6
We speci�cally use the term ’class’ to indicate the groups given by the ground truth,

not the groups detected by an arbitrary clustering method applied on the embedding.
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Figure 10: Evaluation of local purity (le�: banknote, right:
USPS). RSC’s embedding represents the classes well locally.

Figure 11: Evaluation of global separation (le�: banknote,
right: USPS). RSC’s embedding separates the classes well.

the competitors, it outperforms them for larger x , which is also

re�ected by a higher NMI.

Evaluation of Global Separation. We formalize global sepa-

ration by extending the idea of the Silhoue�e coe�cient [17]. For

each class c we compute the list of pairwise distances Pc,c of all

instances within the class, as well as the list of pairwise distances

Pc,c ′ between instances from class c to c ′, i.e.

Pc,c ′ = [dist (hi ,hj )]i ∈Cc , j ∈Cc′

where Cc = {i | ci = c} is the set of all instances from class c .

For each list we compute the average over the (x · 100)% smallest

elements, denoted as Pc,c ′ (x ). Following the Silhoue�e coe�cient,

we then compute the di�erence between the within class distances

and the distance to the closest other class, i.e.

GSc (x ) =
Pc,c ′ (x ) − Pc,c (x )

max{Pc,c ′ (x ), Pc,c (x )}

where c ′ = arg minc ′,c Pc,c ′ (x ). In the best caseGSc (x ) = 1, in the

worst case −1. GSc (x ) can intuitively be regarded as a robust ex-

tension of the Silhoue�e coe�cient (w.r.t. the ground truth classes).

For x = 1, it resembles the Silhoue�e coe�cient w.r.t. class c . For

x < 1 only parts of the distances are considered, thus, capturing

that the embedding might not completely represent the ground

truth. Imagine an embedding that resembles Fig. 1, GSc (x ) will be

relatively low due to similar inter-class and intra-class distances.

Results: Fig. 11 shows the result for two exemplary classes. An

overview of all classes is available in the supp. material. Again, the

raw data shows the worst result, with scores consistently below

0.25 indicating no good separation/clusteredness of the class labels

in the space. In contrast, RSC obtains extremely high scores in

both datasets up to a very high x : for banknote until 0.85, for USPS

0.97. �at is, a very large fraction of the ground truth class is

well separated and clustered in the learned embedding. Clearly,

not every class from the data shows such perfect result since the

NMI scores are 0.61 and 0.85. �e (sharp) drops at the end indicate

that some of the instances of the ground truth class are wrongly

assigned to a di�erent region in the embedding space. When trying

to include these (x = 1), the score highly drops. �e competing

approaches consistently perform worse, showing no good match

between the ground truth and the clusteredness of the embedding.

�e results on the USPS data also indicate that local purity and

global separation of an embedding are indeed two di�erent proper-

ties: While SC and AHK have good results on the local purity, they

perform poor regarding global separation. �e learned embeddings

of RSC capture well both properties con�rming the bene�t of our

joint learning principle.

7 CONCLUSION
We proposed a spectral clustering technique for noisy data. Our

core idea was to decompose the similarity graph into two latent

factors: sparse corruptions and clean data. We jointly learned the

spectral embedding as well as the corrupted data. We proposed

three di�erent algorithmic solutions using di�erent Laplacians. Our

experiments have shown that the learned embeddings clearly em-

phasize the clustering structure and that our method outperforms

spectral clustering and state-of-the-art competitors.
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APPENDIX
Proof of Lemma 4.1. Note that L(Aд ) = D (Aд ) −Aд = (D (A) −

D (Ac )) − (A − Ac ) = L(A) − L(Ac ). �us, Eq. (2) can equivalently

be wri�en as Tr(H T · L(Aд ) ·H ) = Tr(H T · (L(A) − L(Ac )) ·H ) =
Tr(H T · L(A) · H ) − Tr(H T · L(Ac ) · H ).

Given H , the term Tr(H T ·L(A) ·H ) is constant. �us, minimizing

the previous term is equivalent to maximizing Tr(H T · L(Ac ) · H ).
Letyk be a column vector ofH . Noticing that (see [20])yTk L(A

c )yk
=

∑
i, j

1

2
· aci, j · (yk,i − yk, j )

2
, and exploiting the orthogonality of H

it follows: Tr(H T · L(Ac ) · H ) =
∑
k
∑
i, j

1

2
· aci, j · (yk,i − yk, j )

2 =∑
i, j

1

2
· aci, j ·




hi − hj





2

2

, where the last step used yk,i = hi,k .

To ensure that Ac
as well as Aд

are non-negative, it holds 0 ≤

aci, j ≤ ai, j . �us, if ai, j = 0 then aci, j = 0. Exploiting this fact

and the symmetry of the graph leads to

∑
i, j

1

2
· aci, j ·




hi − hj





2

2

=∑
(i, j )∈E aci, j ·




hi − hj





2

2

.

Next, we show that there exists a solution where each aci, j ∈{0,ai, j }.
As known, 0 ≤ aci, j ≤ ai, j . Let M = [ace ]e∈E be a maximum of Eq.

(3) where some aci, j > 0 but < ai, j . Let M ′ be the solution where

this entry is replaced by aci, j = ai, j . Since only ‖ . ‖
0

constraints are

used, M and M ′ ful�ll the same constraints. Since



hi − hj





2

2

is non-

negative, f1 (M ′) ≥ f1 (M ). It follows, that a solution minimizing Eq. (2)

can be found by investigating aci, j = 0 or aci, j = ai, j only. �

Proof of Lemma 5.1. �e goal is to �nd a matrix Aд
whose sum

of the �rst k eigenvalues is minimal (and ful�lls the given constraints).

Since, however, Aд
is not known, we refer to the principle of eigen-

value perturbation.

Let At
be the matrix obtained in the previous iteration of the al-

ternating optimization and let yi be the i-th generalized eigenvec-

tor of L(At ) (these are the columns of the matrix H from above, i.e.

yi, j = hj,i ). Furthermore, denote the corresponding eigenvalues with

λi . We de�ne L(Aд ) − L(At ) =: ∆L and D (Aд ) − D (At ) = ∆D .

Based on the theory of eigenvalue perturbation [19], the eigenvalue

λдi of L(Aд ) can be approximated by

λдi ≈ λi + y
T
i · (∆L − λi · ∆D ) · yi

= λi + yTi · ((L(A
д ) − L(At )) − λi · (D (Aд ) − D (At ))) · yi

Using the fact that L(Aд ) = L(A) − L(Ac ) and D (Aд ) = D (A) −
D (Ac ), and a�er rearranging the terms, we obtain

λдi ≈

=:ci︷                                                                       ︸︸                                                                       ︷
λi + yTi · ((L(A) − L(At )) − λi · (D (A) − D (At ))) · yi

− yTi · ((L(A
c )) − λi · (D (Ac )) · yi︸                                        ︷︷                                        ︸

=:дi

Since ci is constant, minimizing λдi is equivalent to maximizing дi .
Simplifying yields:

дi = yTi · L(A
c ) · yi − λi · yTi · D (Ac ) · yi

=
∑
j, j ′

1

2

acj, j ′ (yi, j − yi, j ′ )
2 − λi

∑
j

y2

i, j · d
c
j

where dcj = [D (Ac )]j, j =
∑
j ′ acj, j ′ . �us

дi =
∑
j, j ′

1

2

acj, j ′ (yi, j − yi, j ′ )
2 − λiy2

i, ja
c
j, j ′

=
∑
j, j ′

acj, j ′
(

1

2

(yi, j − yi, j ′ )2 − λiy2

i, j

)
and exploiting the symmetry of the graph, we obtain

дi =
∑

(j, j ′)∈E

acj, j ′
(
(yi, j − yi, j ′ )2 − λiy2

i, j − λiy
2

i, j ′
)

Since the overall goal is to minimize

∑k
i=1

λдi , we aim at maximizing

k∑
i=1

дi =
k∑
i=1

∑
(j, j ′)∈E

acj, j ′
(
(yi, j − yi, j ′ )2 − λiy2

i, j − λiy
2

i, j ′
)

=
∑

(j, j ′)∈E

acj, j ′
*.
,

k∑
i=1

(yi, j − yi, j ′ )2 −
k∑
i=1

λiy2

i, j −

k∑
i=1

λiy2

i, j ′
+/
-

By noticing that yi, j = hj,i we obtain

=
∑

(j, j ′)∈E

acj, j ′
*...
,




hj − hj ′





2

2

−




√
λ ◦ hj





2

2

−




√
λ ◦ hj ′





2

2︸                                                ︷︷                                                ︸
x

+///
-

Note that some of the terms x might be negative. Clearly, since we

aim to maximize the equation – and since aci, j ≥ 0 – for these terms

we have to choose aci, j = 0. For the remaining (non-negative) terms,

the same arguments apply as in the proof of Lemma 4.1: i.e. they are

either 0 or ai, j . �us, overall, for each term we have ace ∈ {0, ae }. �

Proof of Lemma 5.2. Note that aдi, j = ai, j −a
c
i, j and dдi = di −d

c
i .

Let yk be a column vector of H . It holds yTk · Lsym (Aд )yk
[20]

=∑
i, j

1

2
aдi, j (

yk,i√
dдi
−
yk, j√
dдj

)2 =
∑
i, j

1

2
aдi, j (

y2

k,i

dдi
+
y2

k, j

dдj
−

2·yk,iyk, j
√
dдi

√
dдj

) =
∑
i

1

2
y2

k,i

+
∑
j

1

2
y2

k, j −
∑
i, j

aдi, jyk,iyk, j
√
dдi

√
dдj

. Sinceyk is given, the �rst two terms are

constant. Furthermore, due to orthogonality it holdsT r (H T LsymH )

=
∑
k y

T
k · Lsymyk . �us, minimizing the trace is equivalent to maxi-

mizing∑
k
∑
i, j

aдi, jyk,iyk, j
√
dдi

√
dдj
=

∑
i, j

aдi, j
√
dдi

√
dдj

hi · hTj , noticing that yk,i = hi, j .

Exploiting the graph’s symmetry concludes the proof. �

Proof of Corollary 5.4. Adding e = (i, j ) to X has the follow-

ing e�ects: the term ace changes from 0 to ae ; the degree of the two

incident nodes becomes dX∪{e }i = dXi − ae . �erefore,

f3 (vX∪{e } ) = f3 (vX ) −
pe√

dXi ·
√
dXj

−
∑

(x,y )∈(Ei∪Ej )\X
(x,y ),(i, j )

px,y√
dXx ·

√
dXx

+
∑
x,j

(i,x )∈Ei \X
∨(x,i )∈Ei \X

pi,x√
dXi − ae

√
dXx

+
∑
x,i

(j,x )∈Ej \X
∨(x, j )∈Ej \X

px, j√
dXj − ae

√
dXx

= f3 (vX ) + s (i, ae , X) + s (j, ae , X) + δ (e, X) = f3 (vX ) + ∆(e, X)

Since X is given, f3 (v
X ) is constant. �us, the edge e ∈ E′ maximiz-

ing f3 (v
X∪{e } ) is found by maximizing ∆(e, X). �
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