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Abstract

We study the problem of robust attributed graph clustering.
In real data, the clustering structure is often obfuscated due to
anomalies or corruptions. While robust methods have been re-
cently introduced that handle anomalies as part of the cluster-
ing process, they all fail to account for one core aspect: Since
attributed graphs consist of two views (network structure and
attributes) anomalies might materialize only partially, i.e. in-
stances might be corrupted in one view but perfectly fit in
the other. In this case, we can still derive meaningful cluster
assignments. Existing works only consider complete anoma-
lies. In this paper, we present a novel probabilistic genera-
tive model (PAICAN) that explicitly models partial anomalies
by generalizing ideas of Degree Corrected Stochastic Block
Models and Bernoulli Mixture Models. We provide a highly
scalable variational inference approach with runtime com-
plexity linear in the number of edges. The robustness of our
model w.r.t. anomalies is demonstrated by our experimental
study, outperforming state-of-the-art competitors.

Introduction
Clustering of attributed graphs – a special type of multi-
view data – has become an important research field (Both-
orel et al. 2015), with application domains from social
networks, over e-commerce, to gene analysis. By simulta-
neously utilizing both network structure and attribute in-
formation clustering results can be improved. In real life
scenarios, these datasets are often polluted by rare oc-
currences, anomalies or corruptions. A spammer, for ex-
ample, might be trying to connect to as many nodes as
possible, inducing spurious edges and thus obscuring the
real group structure in the data. Another source of anoma-
lies are for example users on a social network obfuscat-
ing some of their attributes (age, political affiliation) on
purpose due to privacy concerns. Since these anomalies
hinder the cluster detection, robust attributed graph clus-
tering methods have been proposed (Perozzi et al. 2014;
Gao et al. 2010). Instead of first applying anomaly detec-
tion for attributed graphs (Akoglu, Tong, and Koutra 2015),
followed by the actual clustering on the remaining data,
anomaly detection and clustering are performed simulta-
neously. Such joint learning has shown high performance
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Figure 1: Three types of anomalies in attributed graphs.

for many other tasks such as regression (Rousseeuw and
Leroy 2005), PCA (Wright et al. 2009; Candès et al. 2011),
matrix factorization (Xiong, Chen, and Schneider 2011),
and autoregression (Günnemann, Günnemann, and Falout-
sos 2014). The big challenge – not sufficiently captured by
the existing works – is that anomalies in attributed graphs
materialize in different ways. Specifically one has to take
into account challenging camouflage behavior: A user in a
social network for example might show corrupted attributes
(to, e.g., hide its identity) but still their friendship relations
are normal. That is, the user is corrupted in only one of the
views – we call this a partial anomaly. Another example of
a partial anomaly is a paper in a citation network, where the
content of the paper fits well in some cluster, but the rele-
vant citations are missing. This can especially happen in a
new and emerging subfield where not everyone is yet aware
of the latest literature. Fig. 1 illustrates this principle in gen-
eral. Node 1 fits nicely into the network structure but has
completely different attributes compared to the other nodes
in its group. On the other hand, node 2 perfectly fits the as-
signed cluster if we only look at its attributes, but it is obvi-
ously an anomaly with regards to the network structure. The
crucial observation is that we can still identify the partial
anomalies’ latent cluster since two sources of information
are given. In the social network example, despite the users’
corrupted attributes we are still able to derive their cluster,
thus, enabling downstream tasks such as e.g. targeted mar-
keting. We observed such partial anomalies in a variety of
real-world datasets.



Existing works (Perozzi et al. 2014; Gao et al. 2010) fail
in handling partial anomalies. As soon as a node is corrupted
in one of the views, it is marked as an anomaly and no longer
belongs to any cluster, even though it might perfectly fit in
the other view. Simply speaking, the benefit of having both
network structure and associated attributes is not taken into
account for anomaly detection in existing works. Solving
this limitation, we propose a model for attributed graph clus-
tering that accounts for partial anomalies: i.e., a node may
be corrupted in one space but not in the other. As a strong
benefit of this – and in contrast to all existing works – we
are still able to infer a node’s group assignment even if it is
(partially) corrupted. Thereby, we not only obtain more in-
formative results, but we also enable a comparison between
the nodes’ observed and expected information. E.g. for node
1 we observe attributes (1,0,0) but would expect (0,1,1) due
to its cluster membership.1 Clearly, our model also handles
complete anomalies such as node 3, which does not fit to any
group with neither attribute nor graph space.

To realize these ideas, we propose a novel probabilis-
tic generative model for attributed graphs, PAICAN (Par-
tial Anomaly Identification and Clustering in Attributed
Networks). We jointly model (a) the attribute and net-
work space, as well as (b) the latent group assign-
ments and anomaly detection by introducing a generalized,
anomaly-aware Degree-Corrected Stochastic Block Models
(DCSBM) combined with a Beta-Bernoulli mixture model.
The main contributions of this work are:
• Robustness and Partial Anomalies: A novel probabilis-

tic generative model that jointly performs clustering and
anomaly detection in attributed graphs. It is the first work
that realizes robust clustering for attributed graphs fol-
lowing a power law degree distribution, thus capturing
real-life properties. Our model further takes into account
that nodes might be only partially anomalous, thus, en-
abling us to assign partially anomalous nodes to mean-
ingful clusters.

• Scalable algorithm: Using variational inference and ex-
ploiting special properties of our model we propose an al-
gorithm with runtime complexity O(#edges). Our vari-
ational formulation enables us to reason about the uncer-
tainty of the cluster and the anomaly assignments via their
posterior distributions.

Related work
Clustering attributed graphs has attracted strong attention.
For a general overview we refer to (Bothorel et al. 2015). In
line with the focus of this paper, we here describe primarily
works with the following aspects: robustness to anomalies
and principled probabilistic generative models.

So far, only two approaches jointly perform clustering
and anomaly detection in attributed graphs: CODA (Gao et
al. 2010) and FocusCO (Perozzi et al. 2014). Both detect
complete anomalies only. They do not exploit the fact that
instances can be partially corrupted. CODA has the addi-
tional disadvantages of poor scalability and high sensitivity

1Interestingly, (Gao et al. 2010) illustrates an example similar
to node 1; though, still fails to derive a cluster assignment.

to hyper-parameter choice and initialization, thus, requiring
multiple restarts. FocusCO being a semi-supervised method
needs labeled data as examples of similar nodes. In contrast,
our technique does not require supervision. We compare
against both techniques in our experimental study.

Further approaches have been introduced that follow the
spirit of generative models, but are not robust to anoma-
lies. Note that it is not sufficient to simply treat anoma-
lies as an additional cluster since anomalies might not
show specific clustering behavior. Therefore, we cannot sim-
ply use these non-robust techniques for anomaly detection.
Among the non-robust methods, PICS (Akoglu et al. 2012),
CESNA (Yang, McAuley, and Leskovec 2013) and SIAN
(Newman and Clauset 2016) only derive point-estimates of
the learned parameters. BAGC/GBAGC (Xu et al. 2012;
2014) learns a posterior distribution over the model param-
eters; however, it does not account for the frequently ob-
served power law distribution of node degrees. LSBM (Hric,
Peixoto, and Fortunato 2016) uses agglomerative multilevel
MCMC for inference and hence also learns a posterior dis-
tribution. So far, only SIAN, LSBM, and our PAICAN han-
dle realistic network structure, all by relying on variants
of DCSBMs. Even though none of the above approaches
is able to handle scenarios of corrupted data, we compare
against PICS, BAGC, SIAN, and LSBM in our experi-
mental study.

Recently, the related task of multi-view anomaly detection
for vector data has been proposed (Iwata and Yamada 2016),
where instances which behave differently across views are
detected. Our model of partial anomalies can capture such
behavior – with the additional benefit of performing clus-
tering as well. Likewise, our approach handles classical
anomaly detection where instances show an overall unusual
behavior.

Focusing on a different notion of robustness, various
methods for subspace clustering on attributed graphs have
been introduced (Günnemann et al. 2013; Günnemann, Bo-
den, and Seidl 2012). Their goal is to derive robust cluster-
ing solutions even if subsets of the attributes are noisy. They,
however, do not consider anomalies. Furthermore, while this
paper is concerned with (partially) anomalous nodes, other
works have proposed robust clustering methods handling
corruptions in the edge structure (Bojchevski, Matkovic, and
Günnemann 2017; Huang et al. 2011).

The PAICAN model
Let G be an undirected attributed graph with N nodes,
and let Aij be an element of the adjacency matrix A ∈
{0, 1}N×N of the graph. We denote with X ∈ {0, 1}N×D
the attribute matrix where for each node i, Xi is a D-
dimensional vector of binary attributes. We denote with K
the number of groups to detect. An overview of the prob-
abilistic generative model is given in Fig. 2. Note that the
latent variables c and z are shared between the graph and
attribute space.

Partial anomalies. The latent variables c = {ci}Ni=1 indi-
cate if a node is (partially) anomalous. Given the two views
in an attributed graph, anomalies might materialize in dif-



ferent ways, as indicated by the table below. Accordingly,
we define ci ∼ Categorical(ρ) , ρ ∼ Dirichlet4(β)
where ρ is the usual Dirichlet prior. To simplify the no-

graph
attributes good anomaly

good ci = 0 ci = 1
anomaly ci = 2 ci = 3

tation we introduce the following two shortcuts: cAi =
0 if ci ∈ {0, 2}, else 1; indicating whether the node is good
or anomalous w.r.t. the graph and similarly regarding the at-
tribute space: cXi = 0 if ci ∈ {0, 1}, else 1.

The variables z = {zi}Ni=1 encode the group assignment
of nodes: zi|ci ∼ Categorical(π) , π ∼ DirichletK(α).
Note that zi is defined if and only if ci 6= 3, that is we can
only reason about the group assignment of node i if it’s not
a complete anomaly.

zi θi θ̃i

ci
Xid

π

ρ

Aij

tdk

ηklηbg

ηbb

i ∈ N

i, j ∈ N ×N

k ∈ K
d ∈ D

k, l ∈ K ×K

Figure 2: Probabilistic Graphical Model of PAICAN.

Graph model
To incorporate anomalies into the graph structure we pro-
pose an anomaly-aware DCSBM, as a generalization of
the well-established DCSBM (Karrer and Newman 2011;
Yan et al. 2014). The probability of an edge between two
nodes i and j is defined as: 2

Aij ∼



Poisson(θiθjηzizj ) i < j, c
A
i = 0, c

A
j = 0

Poisson(
1

2
θ
2
i ηzizi ) i = j, c

A
i = 0, c

A
j = 0

Case 1

Poisson(θ̃iηbg) i < j, c
A
i = 1, c

A
j = 0

Poisson(θ̃jηbg) i < j, c
A
i = 0, c

A
j = 1

Case 2

Poisson(θ̃iθ̃jηbb) i < j, c
A
i = 1, c

A
j = 1

Poisson(
1

2
θ̃
2
jηbb) i = j, c

A
i = 1, c

A
j = 1

Case 3

Case 1: Both nodes are good. If both considered nodes
are good, we refer to a classical DCSBM. Using DCSBM
as our base model we can capture diverse connection pat-
terns and network topologies such as assortativity, ho-
mophily/heterophily, bipartite graphs, etc. The matrix of

2Since we consider undirected graphs, we only need to consider
i ≤ j. As discussed in (Yan et al. 2014), in the sparse regime,
the Poisson distribution represents the Bernoulli model well and
simplifies the derivations. Note that the well established DCSBM
and follow up works are indeed based on the usual (non-truncated)
Poisson distribution. Thus, we use the same in our work.

group edge probabilities called the block matrix is denoted
with η ∈ [0, 1]K×K , and θ = {θi}Ni=1 is the vector repre-
senting the latent degrees of the nodes. Nodes with higher
(latent) degree are more likely to form an edge, thus, en-
abling us to represent networks with a power-law degree dis-
tribution.

Case 2: Only one node is anomalous. If exactly one of
the nodes is anomalous (e.g. a spammer i tries to estab-
lish a connection with a regular user j), we argue as fol-
lows: As in a DCSBM, there might be anomalous nodes
which try to establish more connections than other anoma-
lies. Thus, it is reasonable to account for different (latent)
degrees of anomalies, indicated by θ̃ = {θ̃i}Ni=1. However,
since the anomalous connection itself is often originated by
the anomaly – i.e. a normal user in a social network is not
really interested in establishing a connection to a spammer
– a high latent degree θj of the good node should not be
taken into account. Meaning, an anomaly does not specifi-
cally prefer nodes with a high degree but uniformly estab-
lishes connections to other nodes. Accordingly, only θ̃ of
the anomalous node is considered. Additionally, similar to
η, the parameter ηbg denotes the base probability of an edge
between any anomalous/bad and good node.

Case 3: Both nodes are anomalous. If both nodes are
anomalous, we do not assume any specific clustering behav-
ior. Instead we assume a basic connectivity model which
takes into account the nodes’ latent degrees θ̃ as well as
some base probability ηbb that denotes the probability of any
two anomalous nodes forming an edge.

Discussion of θ and θ̃. The graph model defined above is
not only intuitive but also fulfills two interesting properties:
The Maximum-Likelihood estimate of θ̃i corresponds to the
observed degree of the corruption. Similarly, the MLE for θi
is the number of ’good’ neighbors of node i (i.e. i’s degree
w.r.t. the good nodes; anomalies are excluded).3

Attribute model
We use an (anomaly-aware) Bernoulli mixture model
(BMM). Let t ∈ [0, 1]K×D be the matrix of mixture prob-
abilities, where tdk represent the probability of attribute d
having a value of 1 for the nodes in group k, we obtain
Xid ∼

{
Bernouli(tdzi ) cXi = 0
Bernouli(0.5) cXi = 1

. If the node is good (cXi = 0)

this is a standard BMM. Otherwise we can draw no conclu-
sions about the distribution and we pick the least informative
parameter for the Bernoulli distribution of 0.5. The inferred
probabilities tdk, yield insight into the importance of differ-
ent attributes for different groups, and in the context of text
data, t takes the role of a topic distribution. It is trivial to
extend this work to numerical attributes via e.g. Gaussian
Mixture Models.

3From a generative perspective, a node is either good or anoma-
lous (regarding the graph structure). Thus, for each instance either
only θ̃i or θi is used. Hence, in principle, we can combine both vec-
tors θ and θ̃ to a single one. However, since later in our learning
procedure we compute each node’s posterior distribution (i.e. each
node is good/anomalous with a specific probability), it is beneficial
to model both variables separately.



Posterior inference
We are interested in the posterior distribution of the la-
tent variables z and c as well as point-estimates for the
remaining parameters – MAP estimates for the latent vari-
ables (π,ρ) and MLE for (η, ηbg , ηbb,θ, θ̃, t). For inference,
we employ a mean-field variational approximation (MFVI),
i.e. we learn a variational distribution q aiming to max-
imize the evidence lower bound (ELBO) (Bishop 2006):
L = Eq [log p(A,X, z, c| . . .)]−Eq [log q(z, c)]. Our coordinate as-
cent MFVI algorithm has closed form locally optimal up-
dates and is theoretically guaranteed to converge to a local
optimum. We use the following mean-field family:

q(z, c|ψ,φ) =
∏
i

q(zi|ψi)
∏
i

q(ci|φi)

s.t. q(zi|ψi) ∼ Categorical(ψi), q(ci|φi) ∼ Categorical(φi)

where the free variational parameters ψi ∈ [0, 1]K , φi ∈ [0, 1]4

satisfy ∑K
k=1 ψik = 1,

∑3
m=0 φim = 1. As shortcuts for later

use, we define φAi0 = φ0 + φ2, φAi1 = φ1 + φ3, φXi0 = φ0 + φ1,
φXi1 = φ2 + φ3, denoting whether node i is corrupted or not in
graph/attribute space.

Given our model, the ELBO decomposes as follows:

L = Eq [log p(A|z, c,η, ηbg, ηbb, θ, θ̃)]︸ ︷︷ ︸
:=LA

+Eq [log p(X|z, c, t)]︸ ︷︷ ︸
:=LX

(1)

+Eq [log p(z|c,π)] + Eq [log p(c|ρ)]− Eq [log q(z, c)]

The last four terms are straightforward (see supp. material)
and can all be evaluated in linear time w.r.t. the number of
nodes and dimensions. For LA we obtain:

LA =
∑
i<j

[∑
k,l

ψikψjlφ
A
i0φ

A
j0

(
Aij log(θiθjηkl)− θiθjηkl

)
+ φ

A
i1φ

A
j0

(
Aij log(θ̃iηbg)− θ̃iηbg

)
+ φ

A
i0φ

A
j1

(
Aij log(θ̃jηbg)− θ̃jηbg

)
+ φ

A
i1φ

A
j1

(
Aij log(θ̃iθ̃jηbb)− θ̃iθ̃jηbb

)]
+
∑
i

[∑
k

ψikφ
A
i0

(
Aii log(

1

2
θ
2
i ηkk)−

1

2
θ
2
i ηkk

)
+ φ

A
i1

(
Aii log(

1

2
θ̃
2
i ηbb)−

1

2
θ̃
2
i ηbb

)]
(2)

While this term seems to be quadratic in the number of
nodes, which is impractical for large networks, we will de-
rive a method that is linear in the number of edges.

Variational expectation-maximization
We use variational expectation-maximization (EM) (Bishop
2006). That is, we use an iterative update scheme: in the
variational E-step we find the optimal variational parame-
ters of q (Eq. 4 - 5); and in the variational M-step we com-
pute MAP/ML estimates for the remaining parameters re-
garding the ELBO (Eq. - 7); repeated until convergence.
Due to space restrictions, we present here the equations for
graphs without self-loops (Aii = 0). Full derivations and
proofs are available in the supp. material.

We first note one core result which is crucial to ob-
tain linear complexity in the number of edges: Given the
MLE/MAP estimates as derived in the M-Step, it holds:∑

j

∑
l ψjlφ

A
j0θjηkl = 1, ∀k (3)

This result helps to obtain an efficient computation of the
first term in Eq. (2).

E-Step: Update of ψ (i.e. z) and φ (i.e. c). We employ
coordinate ascent, i.e. we optimize each variational parame-
ter while holding the others fixed. In this case, we can derive
closed form updates for the optimal parameters (see (Bishop
2006) (Ch. 10)). The optimal variational parameters for ψik
are:

ψ
new
ik ∝ exp

(
φ
A
i0

[ ∑
j∈Ni

φ
A
j0

∑
l

ψjl log(θiθjηkl)− θi −
1

2
θ
2
i ηkk+

θ
2
i φ
A
i0

∑
l

ψilηkl

]
+ φ

X
i0

∑
d

log Ber(Xid|tdk) + (1− φi3) log πk
)

(4)

Here, we defined Ni as the set of neighbors of i and used
the result of Eq. 3. Normalizing them to 1, i.e. ∑k ψ

new
ik = 1,

gives the final update.
Similarly, for the anomaly assignments φim:

φ
new
i0 ∝ exp(φ̂

A
i0 + φ̂

X
i0 + log ρ0)

φ
new
i1 ∝ exp(φ̂

A
i1 + φ̂

X
i0 + log ρ1)

φ
new
i2 ∝ exp(φ̂

A
i0 + φ̂

X
i1 + log ρ2)

φ
new
i3 ∝ exp(φ̂

A
i1 + φ̂

X
i1 + log ρ3 −

∑
k

ψik log πk) (5)

Here, the updates are based on the following terms regard-
ing the attribute space:

φ̂
X
i0 =

∑
k

ψik

(∑
d

log Ber(Xid|tdk)
)

φ̂
X
i1 = D log(0.5)

and regarding the graph space:

φ̂
A
i0 =

∑
j∈Ni

φ
A
j0

∑
kl

ψikψjl log(θiθjηkl)− θi(1− θiφAi0
∑
kl

ψikψjlηkl)

+
∑
j∈Ni

φ
A
j1 log(θ̃jηbg)− ηbg(θ̃B − φAi1θ̃i)−

1

2
θ
2
i

∑
k

ψikηkk

φ̂
A
i1 = log(θ̃iηbg)

∑
j∈Ni

φ
A
j0 − ηbg θ̃i(g − φ

A
i0)

+
∑
j∈Ni

φ
A
j1 log(θ̃iθ̃jηbb)− θ̃iηbb(θ̃B − φAi1θ̃i)−

1

2
θ̃
2
i ηbb

where we defined g =
∑
i φ

A
i0 and θ̃B =

∑
i φ

A
i1θ̃i. The cru-

cial observation is that the terms g and θ̃B can be maintained
incrementally, i.e. after updating the parameters of node i
both terms can be recomputed in constant time.

Overall, for each node i the updates of ψi and φi can be
computed in linear time w.r.t. the number of its neighbors
Ni. Thus, updating all variables (the full E-step) can be done
in linear time w.r.t. the number edges – and also linear in
the number of dimensions.

M-Step: Update of Remaining Parameters. We
first simplify LA by introducing some abbreviations:
dGi =

∑
j∈Ni φ

A
j0, di=|Ni|, mbg=

∑
i,j φ

A
i1φ

A
j0Aij , mbb =∑

i,j φ
A
i1φ

A
j1Aij , mkl =

∑
i 6=j Aijψikψilφ

A
i0φ

A
j0. We also define

the degree related quantities: DG
k =

∑
i θiψikφ

A
i0, ∀k as the to-

tal degree of good nodes in cluster k and DB =
∑

i θ̃iφ
A
i1 as

total degree of bad nodes. Observe that all these terms can be
computed in linear time w.r.t. the number of edges or nodes.
Furthermore, as also noted in (Karrer and Newman 2011;
Yan et al. 2014), since the likelihood stays the same if we in-
crease all {θi | zi = k} by some factor, given that we also de-
crease ηkl,∀l by the same factor, we need constraints to en-
sure identifiability. Conveniently we pick DG

k
!
=
∑

i d
G
i ψikφ

A
i0

as constraints; and similar w.r.t. θ̃: DB !
=
∑

i diφ
A
i1.



Combining all aspects and after simplification we obtain:

LA =
1

2

(∑
k,l

mkl log ηkl −DGk D
G
l ηkl +mbb log ηbb +D

B
D
B
ηbb
)

+
1

2

∑
i

∑
k,l

ψikψilθ
2
i φ
A
i0(φ

A
i0ηkl − ηkk) +mbg log ηbg − gDBηbg

+
∑
i

φ
A
i0 log θid

G
i + φ

A
i1 log θ̃idi +

∑
i

θ̃iφ
A
i1(1− φ

A
i1)(ηbg −

1

2
ηbb)

We can further simplify this equation based on the follow-
ing observations: If we have a rather clear decision whether a
node is a graph corruption or not, i.e. φAi1 → 0 or φAi1 → 1, the
term∑

i θ̃iφ
A
i1(1−φAi1)(ηbg− 1

2
ηbb) evaluates to zero. Similarly,

for clear clustering assignment, when ψik → 1 for a single k,
the term 1

2

∑
i

∑
k,l ψikψilθ

2
i φ

A
i0(φ

A
i0ηkl − ηkk) becomes zero.

This is indeed what we observed for real data. Besides, while
most terms in LA grow quadratically with N (e.g. DG

k D
G
l ),

these terms grow only linearly. Thus, removing them only
introduces an error of at most 1

N . Therefore, for large graphs
we can safely drop both terms, since the error they introduce
approaches zero in the limit case. We provide further justifi-
cation in the supplementary material. Overall, we get:

LA =

[
1

2

∑
k,l

mkllogηkl −
1

2
D
G
k D

G
l ηkl+

∑
i

φ
A
i0d

G
i log θi + φ

A
i1di log θ̃i +mbg log ηbg+

1

2
mbb log ηbb −

1

2
D
B
D
B
ηbb − gDBηbg

]
·
(
1 +O

(
1
N

))
Using this in the ELBO – and taking the identifiabil-

ity constraints via Lagrange multipliers into account – the
MAP/ML estimates can now be computed by setting the gra-
dient to zero. We obtain

θi = d
G
i , θ̃i = di , tdk =

∑
i rikXid
Rk

ηkl =
mkl

DG
k
DG
l

, ηbg =
mbg

DBg
, ηbb =

mbb
DBDB

(6)

Where we have defined rik = φXi0ψik as expected responsi-
bilities and Rk =

∑
i rik as expected fraction of ones in the

cluster k. The MAP estimates are

πk =
∑
i(1−φi3)ψik+αk∑
i(1−φi3)+

∑
k αk

and ρm =
∑
i φim+βm
N+

∑
m βm

(7)

Using these closed form estimates the full M-step is linear
in the number of edges as well.

Experiments
There are no competing methods that can handle partial
anomalies. Thus, we compare with CODA, FocusCO, PICS,
BAGC, LSBM, and SIAN. To evaluate the clustering qual-
ity we use normalized mutual information (NMI). To ensure
a fair evaluation of the non-robust techniques, we exclude
the generated and detected complete corruptions from the
NMI calculation. That is, the non-robust techniques are not
penalized when they add the corruptions to specific clusters
– being a big advantage. At the same time, to make sure
that robust techniques do not simply mark all instances as
corruptions, we evaluate the detection of anomalies based
on the F1 score. Both measures need to be high at the same
time. For all methods we provide the true numberK of clus-
ters to detect, the non-deterministic methods were restarted

multiple times, and we tuned the parameters required for
CODA and FocusCO. For the competing methods we picked
the solution achieving highest NMI, while for our approach,
we simply perform several restarts with different initializa-
tions and pick the one that gives us the highest likelihood.
The different initializations include multiple random cluster
assignments, as well as cluster assignments obtained from
a baseline DCSBM. Due to this set-up CODA, FocusCO,
LSBM, and SIAN get a strong benefit. PICS and BAGC
are deterministic. We additionally include a constrained ver-
sion of PAICAN where we disable the detection of anoma-
lies, called PAICAN C. Note that we do not compare with
classical DCSBM since PAICAN C is essentially a pure at-
tributed DCSBM (without any anomalies), which is a strictly
stronger baseline. More details on the experimental set-up
including all used datasets and the PAICAN source code are
available in the supp. material.4

Experiments on synthetic data
To ensure a fair evaluation on synthetic data, we do not sim-
ply generate graphs according to our probabilistic model.
Instead, we used the configuration model (Bollobás 1980):
Given a desired degree sequence θ that follows a power-law
distribution p(x) ∝ x−α and density ratio Ein

E , whereEin is
the number of edges within the clusters, the adjacency ma-
trix A for the good nodes is generated according to the con-
figuration model conditioned on randomly generated clus-
ter assignments z. We also generate anomalous nodes that
form edges at random. The attribute matrix X for the good
nodes is randomly generated given topic probabilities drawn
from Beta(0.1, 5). The attributes for the anomalous nodes
are generated given an uninformative prior. Unless otherwise
noted we generate 5K nodes, 100 attributes and 5 clusters.
For each setting of the parameters we generate 10 different
random synthetic datasets and report the mean and standard
deviation of the relevant metric (i.e. NMI, F1 score).

Robustness and anomaly detection. First we evaluate
the robustness of the different methods. We are interested
in answering the following three questions: (i) how is the
clustering quality affected as we increase the percentage
of anomalous nodes in the data; (ii) how many anomalous
nodes we can actually detect; (iii) what is the effect of par-
tial vs. complete anomalies.

To answer the first two questions, we vary the percentage
of anomalies pa from 0% to 30%, where we distributed the
anomalies randomly such that 0.45 pa are partial anomalies
w.r.t. graph space, 0.45 pa w.r.t. to the attribute space, and
the remaining 0.10 pa are generated as complete anomalies.
The results are shown in Fig. 3. As we can see our method
is robust and is able to maintain a high clustering quality de-
spite the presence of anomalies. If we disable anomaly de-
tection (PAICAN C), the quality drop is more evident. Simi-
larly for LSBM and SIAN we can see a clear decrease of the
performance as the percentage of anomalies increases. Con-
sidering Fig. 3b, we can answer the second question: Here,
we plot the F1 score w.r.t. the ground-truth anomalies. Since
PAICAN is able to distinguish between graph and attribute

4http://www.kdd.in.tum.de/PAICAN/
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Figure 3: Clustering and anomaly detection performance on
synthetic data. PAICAN performs best.

corruptions, we can even analyze its performance in detail
(e.g. PAICAN A indicates the F1 score regarding the graph
corruptions). We observe that PAICAN is slightly better at
detecting attribute corruptions, though, in any case clearly
outperforms the competitors.5 Finally, to answer the third
question, we analyze in Figs. 4a and 4b how the methods
behave when nodes are partially anomalous. As before, we
examine the NMI and F1 score for 0%, 5% and 10% anoma-
lies – here generating either only graph anomalies (A), at-
tribute anomalies (X), or complete anomalies (A,X). Again
PAICAN performs consistently and significantly better.
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Figure 4: Clustering and anomaly detection performance on
synthetic data. PAICAN performs best.

Degree distribution and density ratio. Despite the fact
that most real-world networks have power-law like degree
distributions, many (attributed) graph clustering methods are
not equipped to properly handle such scenarios. To illustrate
this effect we generate data where we vary the power-law
exponent to values often encountered in real-world networks
(2.0 ≤ α ≤ 3.0) (Chakrabarti and Faloutsos 2006). We also
include the simple case of uniform ’blocky’ clusters, i.e. all
degrees are the same. Fig. 5a shows the results. Our method
clearly outperforms all competitors and is not sensitive to
the degree distribution and furthermore demonstrates high

5Note that PAICAN is the only method able to handle data with
both power-law distributed degrees and anomalies (see also Fig.
5). Therefore, although FocusCO and CODA can detect anomalies
in principle, they fail to detect most of them in the power-law dis-
tributed case. They are relatively better for the less common case
of ’blocky’ clusters, however PAICAN still outperforms them (see
Fig. 1 in the supp. material).
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Figure 5: Effect of degree distribution and density ratio on
clustering quality. PAICAN clearly performs best.

stability as shown by the low standard deviation across dif-
ferent runs.

We also explore how the methods behave w.r.t the density
ratio Ein

E . We see on Fig. 5b that most methods start failing
as soon as ratio of intra-cluster edges becomes too small,
with PAICAN being able to handle the disassortative case
the best.

Runtime complexity. The complexity of our method is
linear in the number of edges and dimensions. Fig. 6 con-
firms this result. BAGC and LSBM do not scale linear w.r.t.
the number of edges, while CODA does not perform well
when increasing the number of attributes (note the log scale
on Fig. 6b). SIAN has the worst scaling out of all the meth-
ods even though performs relatively well w.r.t. NMI. All of
the methods except CODA are not affected by the number
of attributes.
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Figure 6: Runtime vs. number of edges and attributes.
PAICAN scales linearly.

Experiments on real-world data
Dataset description. We used six attributed graph datasets,
available in the supp. material, along with detailed descrip-
tion. CORA is a well-known citation network (N=2708,
E=5429, D=1434) The LAZEGA LAWYERS dataset con-
tains different networks among attorneys with some cate-
gorical attributes for each of them. We use the friendship
network and binarize the attributes to obtain N=71, E=575,
D=70. HVR (N=307, E=6526, D=6) is a dataset consisting
of several networks of highly recombinant malaria parasite
genes. Similar to (Newman and Clauset 2016) we analyze
the HVR 6 subnetwork and use the Cys-PoLV (CP) labels



as ground-truth clusters. DBLP (N=40k, E=418k, D=28) is
a co-authorship network of computer science researchers,
with the attributes signifying conferences at which authors
have published. We created an AMAZON co-purchase at-
tributed graph where the attributes are binary product cat-
egory indicators. We form the dataset from a random sub-
set of products and select the largest connected compo-
nent (N=29k, E=850k, D=4643). We introduce the PARLIA-
MENT dataset where nodes are French parliament members
having an edge if they cosigned a bill together, while their
attributes indicate their constituency (N=451, E=11646,
D=108). Here we consider political parties as ground-truth
clusters. We also create a new SOCIALPAPERS dataset
where nodes represent biomedical papers forming edges if
they are frequently mentioned by the same users on social
media (N=20k, E=2mio, D=96). The attributes designate the
paper’s subjects (e.g. psychology, neurology), and journals
are considered as ground-truth communities. The data was
collected using the Altmetric API (Adie and Roe 2013).

Ground-truth evaluation. The table below shows the
NMI achieved by PAICAN and the competing methods on
datasets with ground-truth labels. As we can see PAICAN
consistently outperforms the competitors. The non-robust
LSBM performs relatively well for most but not all datasets.
CODA shows promising results for some datasets, but suf-
fers from scaling issues.

CODA FocusCO BAGC PICS LSBM SIAN PAICAN

Lawyers 0.50 0.28 0.14 0.27 0.50 0.58 0.66
Parliament 0.06 0.00 0.53 0.47 0.77 0.73 0.78
Cora d.n.f. 0.13 0.15 0.04 0.52 0.39 0.53
Social Papers d.n.f. 0.25 0.17 0.10 0.50 d.n.f. 0.52
HVR 0.71 0.50 0.18 0.44 0.83 0.77 0.89

Table 1: Comparison of NMI for real-world datasets.

Convergence and runtime. We examine the convergence
of our algorithm by studying the value of the ELBO per it-
eration. Fig. 7a shows the evolution of the ELBO for the
CORA dataset per iteration. PAICAN quickly converges af-
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Figure 7: Runtime vs. number of edges and attributes.
PAICAN scales linearly.

ter a few iterations showing the effectiveness of our varia-
tional method. Overall, PAICAN easily handles large graphs
as the runtime statistics (seconds per iteration) on the real-
world data in Table 7b show.

Case study: Anomaly detection. As a case study for
partial anomalies we analyzed the DBLP dataset. Overall,

PAICAN found 37 partial attribute corruptions, 12 partial
graph corruptions, and 71 complete corruptions. Since we
have no anomaly ground truth we manually analyzed the
detected partial anomalous nodes. As an example, the au-
thor Srinivasan Parthasarathy has been marked as anoma-
lous in attribute space. When inspecting his ego-network he
fits nicely in graph space since most of his neighbors be-
long to the same cluster. Inspecting his attributes however,
we observed that most of his co-authors published in just a
few conferences (mainly KDD, ICDM, SDM) while he pub-
lished in 18 different ones (including e.g. EDBT, IJCAI).
This justifies his marking as a partial attribute anomaly. We
provide a plot of the ego-network, as well as further case
studies on other datasets in the supp. material.

Case study: Clustering. To enable visual inspection of
the clustering, we select a small subset (N = 1549, E =
36934, D = 661) of the AMAZON dataset. The results for
K = 15 are visualized in Fig. 8. The learned topic distribu-
tion t is shown, where for easier visualization we only plot
dimensions where tdk > 0.5 for at least one cluster. Intu-
itively, this plot shows the ’active’ categories for each clus-
ter. For example the products in cluster C2 have the follow-
ing most active categories [Wii U, Nintendo 3DS, PlaySta-
tion 3, Xbox 360] clearly showing a coherent cluster of prod-
ucts related to gaming consoles. Similarly, inspecting the
topics of C10 shows products about jewelery and C14 cell
phone cases related products. This case study clearly demon-
strates that PAICAN learns meaningful clusters.
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Figure 8: Topics of the clusters in Amazon data.



Conclusion
We proposed PAICAN, a probabilistic model for attributed
graph clustering. PAICAN jointly learns the clustering struc-
ture as well as potential anomalies. In particular, exploiting
the two views of information in attributed graphs, PAICAN
introduces the notion of partial anomalies. For learning, we
proposed a scalable variational EM algorithm, whose run-
time complexity is linear in the number of edges and at-
tributes. Our experimental study confirmed the robustness
of PAICAN regarding partial and complete corruptions –
state-of-the-art competitors are consistently outperformed.
As future work, we aim to investigate methods for automat-
ically selecting the number of clusters using, e.g., principles
of nonparametric Bayesian modeling, as well as extensions
to numerical attributes.
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