Efficient Robustness Certificates for Discrete Data

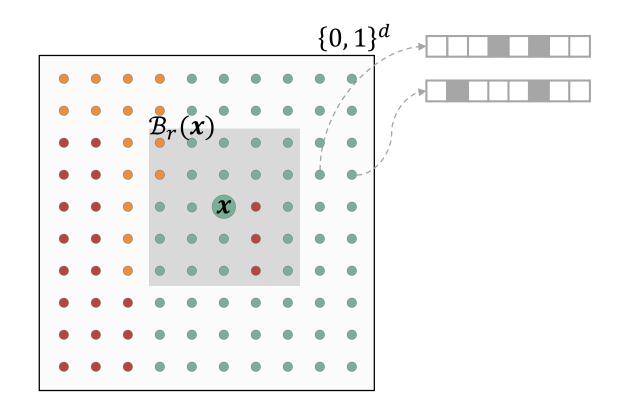
Sparsity-Aware Randomized Smoothing for Graphs, Images and More

Aleksandar Bojchevski, Johannes Klicpera, Stephan Günnemann

tl;dr Robustness Certificate

Guarantee that the prediction does not change for all \tilde{x} in a ball $\mathcal{B}_r(x)$ around the input x

Here $\mathcal{B}_r(\mathbf{x})$ is the L_0 ball: the attacker can change up to r bits



Node-level Classification Graph-level Classification

Given any base classifier for discrete data

ResNet Transformer DNN

. . .

Graph Neural Network

Discretized Images Text Molecules (SMILES)

...

Certify a smoothed classifier w.r.t. an L_0 adversary

Sparsity-aware smoothing improves guarantees

Reduced complexity: $O(d^3)$ to O(r)

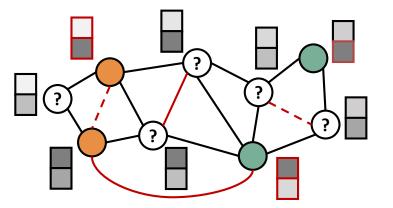
Results on Graphs, MNIST, ImageNet, ...

tl;dr Certifying Graph Neural Networks

Any GNN: GCN, GAT, PPNP, GIN, ...

Perturbing both graph and node attributes

First certificate for graph-level classification

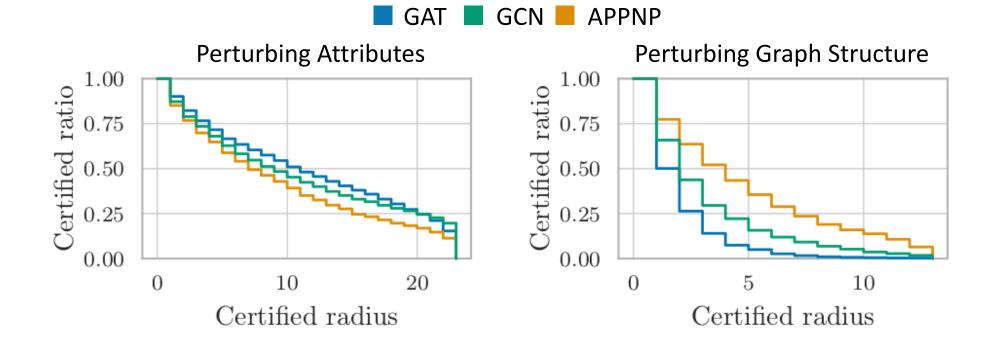


Perturbations:

- inserted edge
- -- deleted edge
- perturbed attribute

tl;dr Certifying Graph Neural Networks

Different GNNs have different robustness trade-offs



Randomly Smoothed Classifiers

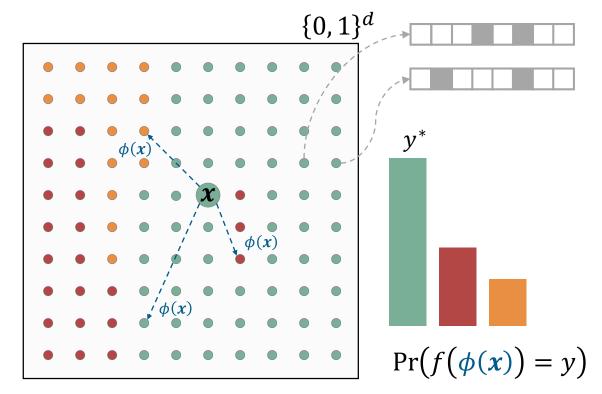
Given:

- Any base classifier $f: \mathcal{X} \to \mathcal{Y}$
- Any randomization scheme $\phi(x)$

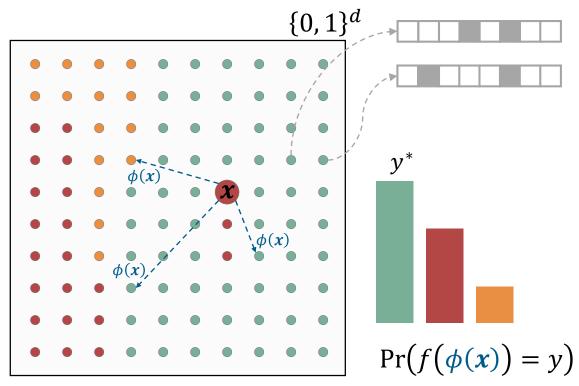
Certify a smoothed classifier g

$$g(\mathbf{x}) = \underset{y \in \mathcal{Y}}{\operatorname{argm} ax} \Pr(f(\phi(\mathbf{x})) = y)$$

majority vote y*



Example:
$$f(\mathbf{x}) = \mathbf{O}$$
, but $g(\mathbf{x}) = \mathbf{O}$

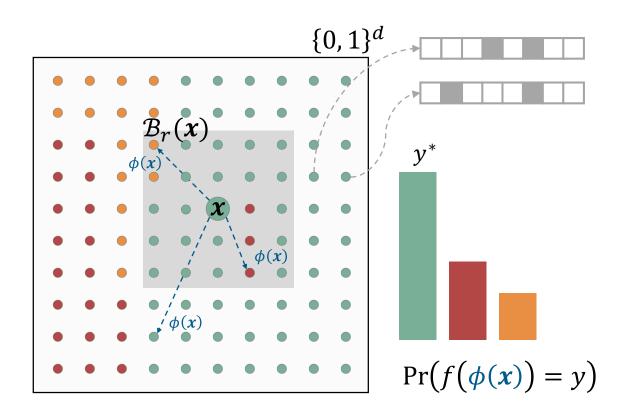


Randomly Smoothed Classifiers

Goal:

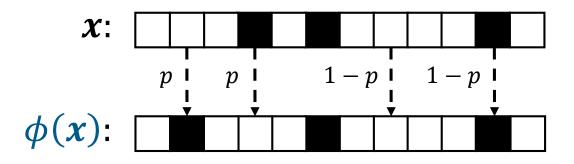
Guarantee that the majority votes does not change for all \tilde{x} in a ball $\mathcal{B}_r(x)$ around the input x

For all
$$\widetilde{x}$$
, $\Pr(f(\phi(\widetilde{x})) = \bullet) > 0.5$



 $\frac{1}{\sqrt{2}}$ Choosing the Randomization Scheme $\phi(x)$

First idea: Randomly flip bits with probability p

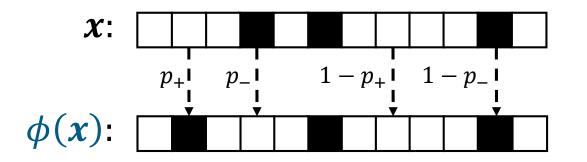


Higher *p* leads to better guarantees

Problem: For sparse data even moderately small *p* destroys the data

$\frac{1}{\sqrt{2}}$ Choosing the Randomization Scheme $\phi(x)$

Sparsity aware: Treat zeros separately



Graphs: Insert edges with p_+ , delete edges with p_-

We can afford to set p_{-} relatively high and p_{+} relatively low without introducing too much noise in the data

The smoothed classifier is certifiably robust if

min
$$\Pr(f(\phi(\tilde{x})) = y^*) > 0.5$$

subject to:
 $\tilde{x} \in \mathcal{B}_r(x)$

Find the \widetilde{x} that minimizes the probability of the majority vote y^*

Constant Likelihood Ratio Regions

The smoothed classifier is certifiably robust if

$$\min \sum_{i} \Pr(\phi(\tilde{x}) \in \mathcal{R}_{i}) h_{i} \geq 0.5$$

subject to:
$$\tilde{x} \in \mathcal{B}_{r}(x)$$

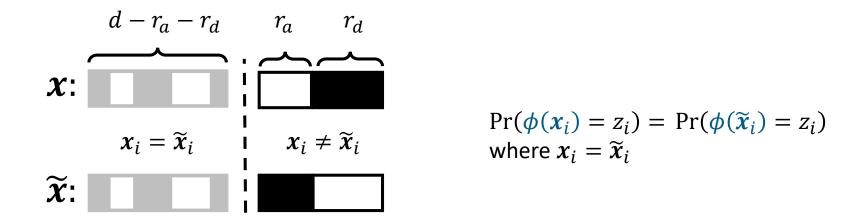
$$h_{i} \in [0, 1]$$

$$\sum_{i} \Pr(\phi(x) \in \mathcal{R}_{i}) h_{i} = p_{\mathcal{Y}^{*}}$$

$$\begin{cases} \{0, 1\}^{d} \\ \mathcal{R}_{i+1} \\ \mathcal{R}_{i} \\ \mathcal{R}_{i-1} \\ \mathcal{R}$$

Constant Likelihood Ratio Regions

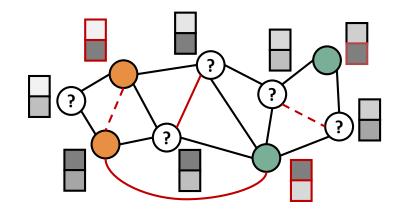
Observation 1: We consider w.l.o.g. only dimensions where $x_i \neq \tilde{x}_i$ Observation 2: Number of regions is independent of d

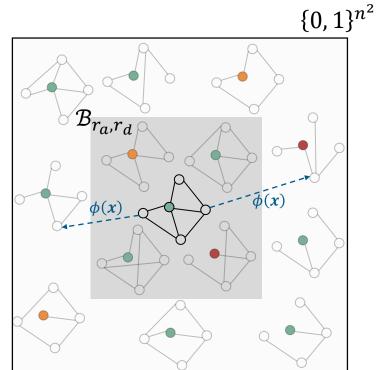


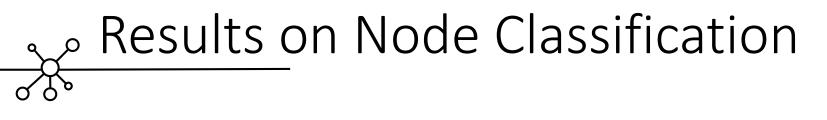
Threat model: $\mathcal{B}_{r_a,r_d} = \{ \widetilde{\mathbf{x}} : \text{adde}d \leq r_a \text{ bits, deleted } \leq r_d \text{ bits} \}$

Threat model: Perturb either graph structure or attributes

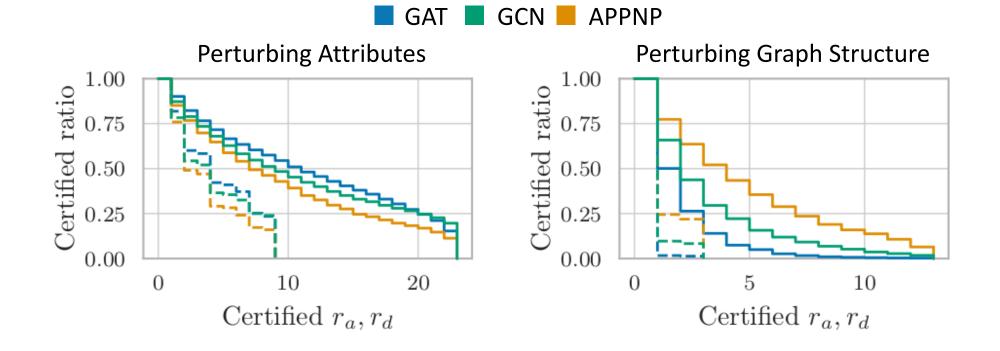
Task: Semi-supervised node classification

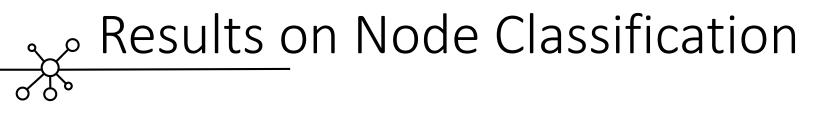




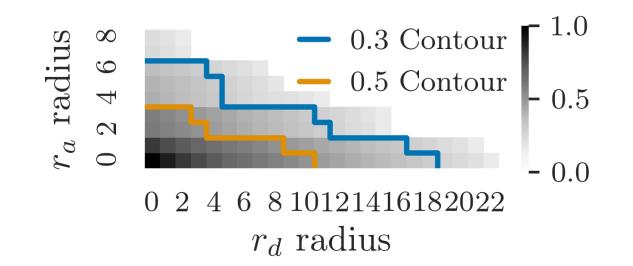


GNNs are more robust to edge deletion than edge addition





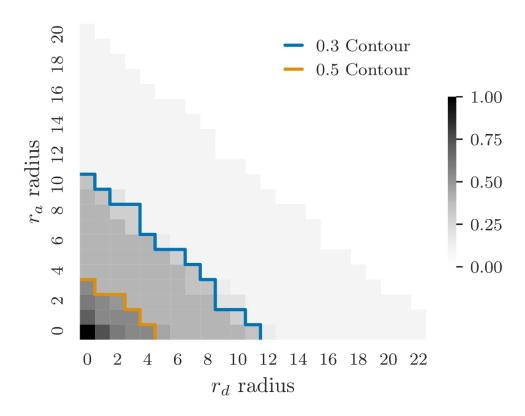
Models are more robust to edge deletion than edge addition

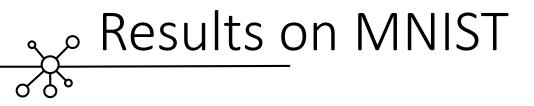


Average max r_d radius is 6.47 with sparse smoothing and 1.75 without

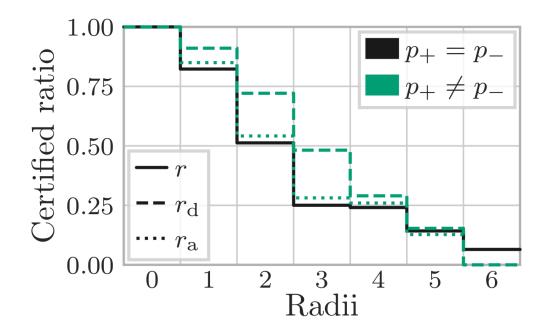
Results on Graph Classification

First certificate for the graph-level classification task





Sparsity-aware smoothing improves the certified ratio



Other results: ImageNet

Dramatically improved runtime for the exact same (tight) certificate

Certi	ficate	Туре	Time	r = 1	r = 3	r = 5	r = 7
Cohe	en et al. (2019)	Continuous	< 1 sec.	0.372	0.226	0.170	0.138
Dvijo	otham et al. (2020)	Discrete	< 1 sec.	0.362	0.224	0.136	0
Lee e	et al. (2019)	Discrete	4 days	0.538	0.338	0.244	0.176
Ours		Discrete	< 1 sec.	0.538	0.338	0.244	0.176

Model-agnostic, Tight, Efficient, & Sparsity-Aware Robustness Certificate

Code & Project Page: https://www.daml.in.tum.de/sparse_smoothing/ Twitter: @abojchevski

