Technical University of Munich Department of Informatics Data Analytics and Machine Learning Group

Collective Robustness Certificates

Exploiting Interdependence in Graph Neural Networks

Jan Schuchardt, Aleksandar Bojchevski, Johannes Klicpera, Stephan Günnemann

Motivation

Multiple nodes classified in a single graph

Multiple objects detected in a single image [1]

Adversarial robustness certification so far focused on single-prediction tasks

[1] A Convolutional Neural Network based Live Object Recognition System as Blind Aid. Kedar Potdar et. al. arXiv:1811.10399

Research Question

How can we certify **collective adversarial robustness**?

- for classification models
- based on Graph Neural Networks

A naïve certificate

- Certify each prediction independently
- Assumes a different attack on each prediction

Our certificate

Ingredient 1: Locality

\rightarrow Not all perturbations affect all predictions

Ingredient 2: Linear certificate encoding

Evaluate single-prediction certificates via linear constraints ...

... by encoding their pareto front

Combining Ingredients 1 & 2

Given a single perturbed graph:

- 1. Aggregate local perturbation $m{b}^{(n)}$ in each receptive field $\,\succ\,$
- 2. Evaluate single-prediction certificates based on $\boldsymbol{b}^{(n)}$

 $\min_{G \in B}$

Results

• is orders of magnitudes stronger,

- is orders of magnitudes stronger,
- model-agnostic,

- is orders of magnitudes stronger,
- model-agnostic,
- compatible with any "base certificate".

- combines single-prediction certificates more intelligently
- by modelling locality and a shared input.

- combines single-prediction certificates more intelligently
- by modelling locality and a shared input.

Poster Session 10 PDT: May 6, 2021, 1 a.m. UTC: May 6, 2021, 8 a.m.