Technical University of Munich Department of Informatics Data Analytics and Machine Learning Group

Motivation

Many tasks involve **multiple predictions** based on a **single input** ...

Multiple nodes classified in a single graph

... that can be **jointly attacked**.

Multiple objects detected in a single image

Existing robustness certificates only consider single predictions.

Research Question

How can we certify the **collective adversarial robustness**

- of classification models
- based on Graph Neural Networks?

A naïve method

Certify each prediction independently!

But this assumes a different attack on each prediction.

Attack 1

Our method

- Certifies collective adversarial robustness
- Combines single-prediction certificates
- Models a shared, persistent input

Collective Robustness Certificates Exploiting Interdependence in Graph Neural Networks

Jan Schuchardt, Aleksandar Bojchevski, Johannes Klicpera, Stephan Günnemann

Ingredient 1: Locality

Attack N

Predictions are based on local receptive fields (think GCN).

 \rightarrow Not all perturbations affect all predictions

Ingredient 2: Linear certificate encoding

Enable evaluation of single-prediction certificates within LPs ...

Certifiable budgets # Edge deletions

... by encoding their pareto front in the adversarial budget space.

 \rightarrow Prediction *n* robust to **b** perturbations $\leftarrow \neg \exists p \in P^{(n)}: \forall d : b_d \geq p_d$.

Combining Ingredients 1 & 2

- Optimize over a single perturbed graph
- Aggregate local perturbation $\boldsymbol{b}^{(n)}$ in each receptive field
- Evaluate single-prediction certificates based on $\boldsymbol{b}^{(n)}$

		attacked edges		
		Manar		
	<i>e</i> ₂₁	<i>e</i> ₆₄	<i>e</i> ₅₂	<i>e</i> ₃₃
each	1	1		1
row	1	1		1
encodes		1	1	
the	1		1	1
receptive	1			1
field	1			T
of a node		1		
				norti

May 3 – 7

Edge deletions

Our certificate ...

... is model-agnostic,

... compatible with any single-prediction certificate,

... yields orders of magnitude stronger robustness guarantees,

... and strengthened by any advance in classifier certification.

https:/www.daml.in.tum.de/collective-robustness